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Human cortex is patterned by a complex and interdigitated web of
large-scale functional networks. Recent methodological break-
throughs reveal variation in the size, shape, and spatial topogra-
phy of cortical networks across individuals. While spatial network
organization emerges across development, is stable over time, and
is predictive of behavior, it is not yet clear to what extent genetic
factors underlie interindividual differences in network topogra-
phy. Here, leveraging a nonlinear multidimensional estimation of
heritability, we provide evidence that individual variability in the
size and topographic organization of cortical networks are under
genetic control. Using twin and family data from the Human Con-
nectome Project (n = 1,023), we find increased variability and re-
duced heritability in the size of heteromodal association networks
(h2: M = 0.34, SD = 0.070), relative to unimodal sensory/motor
cortex (h2: M = 0.40, SD = 0.097). We then demonstrate that the
spatial layout of cortical networks is influenced by genetics, using
our multidimensional estimation of heritability (h2-multi; M =
0.14, SD = 0.015). However, topographic heritability did not differ
between heteromodal and unimodal networks. Genetic factors
had a regionally variable influence on brain organization, such
that the heritability of network topography was greatest in pre-
frontal, precuneus, and posterior parietal cortex. Taken together,
these data are consistent with relaxed genetic control of associa-
tion cortices relative to primary sensory/motor regions and have
implications for understanding population-level variability in brain
functioning, guiding both individualized prediction and the inter-
pretation of analyses that integrate genetics and neuroimaging.
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The cerebral cortex is organized into a tightly interdigitated set
of large-scale functional networks. Seminal tract-tracing work

in nonhuman primates first revealed the structural properties un-
derlying the distributed and parallel organization of cortical net-
works (1). Subsequent resting-state functional connectivity MRI
(fcMRI) analyses leveraged correlation patterns of intrinsic func-
tional MRI (fMRI) signal fluctuations in humans (2) to establish a
canonical network architecture that is broadly shared across the
population (3–8). Yet, many individual-specific properties of brain
network organization are lost when central tendencies are exam-
ined across large groups. The use of population-average network
topographies has accelerated psychological and neuroscientific
discovery, however there is growing recognition that the human
brain is characterized by striking functional variability across indi-
viduals (9–15). As individualized approaches become increasingly
popular for the study of human behavior and psychopathology (13,

16–18), there is growing need to quantify the heritable bases of
population-level variability in functional network size and topog-
raphy. Despite the fact that individual differences result from the
convergence of both genetic and environmental influences, the
extent to which the size and spatial patterning of cortical networks
may reflect heritable features of brain function has not yet been
systematically investigated.
Population-based neuroimaging studies have revealed core

principles that govern the evolution (19), development (20), and
organization (7, 8) of large-scale brain networks. In particular,
fcMRI has been widely utilized to generate group-average net-
work templates through the joint analyses of data across vast
numbers of individuals. The topography of these population-
based network solutions are closely coupled to cognitive func-
tion, and there is strong correspondence between the spatial
structure of intrinsic (fcMRI) and extrinsic (task-evoked) networks
of the human brain (21–23). Consistent with these observations,
functional connectivity patterns track behavioral variability in the
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general population (24–26) and symptom expression in patients
with psychiatric illness (27). Mounting evidence documents the
heritable basis of large-scale brain network function (28–31) as
well as the ability of functional brain connectivity to serve as a
trait-like fingerprint that can distinguish individuals from a larger
group (32, 33). The advent of neuroimaging genetic and brain gene
expression data further permits study of the genetic, molecular, and
cellular correlates of human brain function (34–36). Critically,
however, the use of population-based network templates can ob-
scure individual-specific features of brain organization (9), as there
is substantial evidence for interindividual variability in the size, lo-
cation, and topography of regions comprising distributed functional
networks across the cortical sheet.
The presence of individual differences in connectome organi-

zation presents a challenge for neuroscientists studying the func-
tional architecture of the human brain. The identification of
genetic and developmental cascades that underpin population-level
variability in brain function is partly dependent on whether a group
network atlas aligns to the particular functional topography of an
individual. As one example, reports of population-level variability
in connectivity strengths across participant groups may in fact
emerge from the misalignment of underlying functional networks,
obscuring the distinction between individual differences in network
connectivity and topography (37, 38). Moreover, personalized
network parcellations may be preferable for predictive modeling,
graph theoretic, and imaging genetic approaches in which the
definition of an areal “unit” of cortex can influence downstream
interpretations (39). While the size and shape of individualized
networks are stable across time (40), predictive of behavior (13,
41), and refined over the course of development (42), the molec-
ular and genetic bases of this variability in network size, location,
and spatial arrangement remain to be established. Recent studies
have shown that individual differences in functional connectivity
are heterogeneous across the cortex, with greater variability in
association cortex relative to unimodal regions (13, 15, 40, 43). This
distribution may have practical implications for the heritability of
network topographies in association cortices, pointing to potential
relationships linking the spatial distribution of interindividual var-
iation in functional connectivity, brain evolution, and development.
Quantifying the heritability of individual-specific network topog-
raphies across the cortical sheet could provide new insights into the
biological underpinnings of individual differences in human brain
functions.
Although prior twin studies establish the heritability of func-

tional connectivity strength within population-average network
templates (28, 29, 31, 44, 45), the role of genetics in sculpting the
spatial topography of the functional connectome has yet to be
quantified. To directly address this open question, we couple a
multisession hierarchical Bayesian model (MS-HBM) for esti-
mating individual-specific cortical networks (13) with a nonlinear
multidimensional estimation of heritability. This approach allows
us to establish the extent to which genetic and environmental
factors influence individual differences in network size and to-
pography across the cortical sheet. In doing so, we provide evi-
dence that interindividual variability in both the spatial extent
and topographic organization of cortical networks are under
genetic control.

Results
Interindividual Variability in Network Size Is Nonuniform across
Heteromodal and Unimodal Cortices. We first characterized inter-
individual variability in the size of functional networks across the
cortical sheet. Individual-specific network topographies for each
Human Connectome Project (HCP) participant (46) were obtained
from the method of Kong and colleagues (13), derived using a MS-
HBM. For every participant, each vertex on the cortical surface was
assigned to one of 17 canonical functional networks (8), based on
both intraindividual and interindividual patterns of cortical resting-

state correlation (Fig. 1A). Networks were broadly divided into
those encompassing unimodal sensory and motor regions
(i.e., Visual A/B/C, Somato/motor A/B, and Auditory), and those
linked to heteromodal association cortex (i.e., Default A/B/C,
Control A/B/C, Ventral Attention A/B, Dorsal Attention A/B, and
Language). HCP cortical parcellations were identical to those of
Kong and colleagues (13), who first detailed the MS-HBM ap-
proach and demonstrated that individualized network topographies
are predictive of behavior. Parcellations were derived from surface-
projected resting-state fMRI (rs-fMRI) data aligned to a surface-
mesh group template (fs_LR32k). After masking of the midline,
each participant was left with a 59,412-vertex array of network
labels, where each vertex is assigned to one of 17 networks.
The spatial extent of each network within an individual was

estimated as the summed surface area of all network labeled
vertices, derived using each individual’s FreeSurfer-estimated
vertex surface area. The size of individualized cortical networks
displayed nonuniform patterns of variability across individuals, as
displayed in Fig. 1B. Between-participants variability in network
size was quantified using coefficient of variation (see Methods),
which corrects for baseline differences in average network surface
area. Overall, areal size was significantly more variable among
heteromodal networks relative to unimodal (F(1,32) = 2.51, P =
0.017; Mhet = 24.6, SD = 5.3; Muni = 20.5, SD = 2.4), an effect that
remained if we used SD as a measure of variability rather than
coefficient of variation (F(1,32) = 2.6, P = 0.014; Mhet = 5,236,
SD = 1,856; Muni = 4,800, SD = 2,180). These data are in line with
prior reports that interindividual variability in the strength of
functional connectivity is greatest in heteromodal cortex (43),
corresponding to territories with highest evolutionary cortical ex-
pansion and density of long-range functional connections (47, 48).

Reduced Heritability of Network Size in Heteromodal Relative to
Unimodal Cortex. Interindividual differences in network connec-
tivity strengths are partly attributable to genetic variation (29).
However, the majority of the literature on the genetic bases of
network architecture relies on population-level motifs derived by
averaging data across large groups of spatially normalized indi-
viduals (28, 30, 45). To advance understanding of the biological
bases of network organization, it is important to move from group-
level parcellations to a level of granularity that is only accessible
when studying network organization within the individual. Given
that both the size and shape of individualized functional networks
are tied to behavior (13, 17, 40, 42), it is critical to determine
heritable sources of variation that govern the amount of cortex
occupied by a given functional network.
Analyses revealed that the size of individualized networks

were significantly heritable across all canonical large-scale
functional territories (Fig. 2A). Heritabilities (h2) were calcu-
lated using individualized network size (controlling for total
surface area) and ranged between 0.23 to 0.60 (M = 0.36, SD =
0.09; Dataset S1A). Heritability of surface area for each network
was estimated using sequential oligogenic linkage analysis rou-
tines [SOLAR (49)] and covaried for age, age2, age × sex, age2 ×
sex, total surface area, and FreeSurfer-derived estimated total
intracranial volume. Suggesting broad consistency in the influ-
ence of genetic factors on the size of cortical networks across
hemispheres, a significant positive correlation between left- and
right-hemisphere heritability estimates was evident across the 17
networks (Fig. 2B; Pearson’s r(15) = 0.61, P = 0.0086; Spear-
man’s rs = 0.63, P = 0.009). Notably, heritability was significantly
greater within unimodal networks (h2: M = 0.40, SD = 0.097)
than networks within heteromodal (h2: M = 0.34, SD = 0.070)
association cortices (Fig. 2C; F(1,32) = 2.36, P = 0.025).
The above analyses covary for total surface area to account for

global differences in cortical size; however, estimates of regional
area can scale in a nonlinear fashion with total area (19). An
additional set of analyses was conducted to account for such
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allometric scaling of cortex. General additive modeling was used
to conduct a log–log regression, relating the log of individualized
network size to the log of total surface area, covarying for age
and sex (Methods). In this context, a coefficient greater than 1
reflects positive areal scaling (greater network size relative to
total surface area) and a coefficient less than 1 reflects negative
scaling. We found that heteromodal networks had significantly
greater positive scaling coefficients compared with unimodal
networks (SI Appendix, Fig. S2A; F(1,32) = 3.04, P = 0.0048;
Mhet = 1.09, SD = 0.18; Muni = 0.92, SD = 0.08). The heritability
of allometrically adjusted network size was then estimated, re-
vealing a pattern that was highly consistent to the results displayed
in Fig. 2A. Specifically, the parcel-to-parcel correlation of linear
versus allometrically adjusted h2 was Spearman’s rs = 0.95, P <
2.2 × 10−16. We note that the finding of increased heritability of
unimodal cortex versus heteromodal cortex did not attain statistical
significance after allometric surface area adjustment (SI Appendix,
Fig. S2C; F(1,32) = 1.88, P = 0.069).
Overall, these data demonstrate the substantial influence of

genetic factors on the spatial extent of cortical networks across
individuals. The results are consistent with the hypothesis that
late-developing aspects of heteromodal association cortex are
under relaxed genetic control relative to unimodal cortex (50).
We emphasize that heritability reflects the degree that genetics
explains individual differences in a trait within a given environ-
mental context, not the degree to which a trait is evolutionary
constrained or genetically encoded.

Heritability of Individualized Network Topography across Cortex. The
connectivity strength of functional networks varies across indi-
viduals (32, 43). Individualized parcellation approaches have
established similar patterns of interindividual variation in terms
of cortical network topography, operationalized as the spatial
configuration of a given network on the cortical sheet (11, 13).

Factors that may play a role in differentiating functional topog-
raphy across individuals include mechanical tension of neuronal
projections (51), cellular and molecular properties of cortex (52),
variations in early cortical arealization by embryonic molecular
patterning centers (53), and the fundamental role sensory input
plays in shaping functional organization across the cortical sheet
(54). However, the extent that variability in the spatial organiza-
tion of cortical networks is genetically driven within the general
population remains unknown.
Here, we establish that genetic factors influence individualized

network topographies using a multidimensional estimator of her-
itability. In traditional heritability analyses, the variability of a
continuous (e.g., height) or categorical (e.g., diagnosis) phenotype
is decomposed into the relative effects of additive genetics (A),
shared environment (C), and unique environment [E; ACE model
(55)]. Network topography, however, is inherently multidimen-
sional, since any given cortical vertex is categorically assigned to
one of a set of functional networks. To account for this property of
network organization, we developed an approach to estimate
heritability from a linear or nonlinear phenotypic similarity matrix
defined across individuals. Interindividual covariance of network
shape was quantified using the Dice coefficient, which reflects the
amount of spatial overlap for any given network and participant
pair (see Fig. 3D for example). That is, higher Dice coefficients
correspond to more similar network configurations. The observed
Dice coefficients were variable across individuals as well as
nonuniformly distributed across networks (Fig. 3A). The to-
pographies of unimodal networks were overall more similar
across individuals (Dice: M = 0.77, SD = 0.05) relative to
heteromodal association networks (Dice: M = 0.55, SD = 0.06;
F(1,32) = 112.4, P = 5.35 × 10−12). The increased topographic
variability of association networks is consistent with prior re-
ports of greater interindividual variation in accompanying
patterns of long-range connectivity (43).
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Fig. 1. Individualized network size is more variable in heteromodal relative to unimodal cortex. (A) Individualized parcellations are composed of 17 canonical
functional networks present in all HCP individuals, as defined by Kong and colleagues (13). (B) The ridge plot shows distributions of network size across all
individuals, measured in mm2 and separated by hemisphere (top ridge = right hemisphere, bottom ridge = left hemisphere). (C) Variability of individualized
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Anderson et al. PNAS | 3 of 9
Heritability of individualized cortical network topography https://doi.org/10.1073/pnas.2016271118

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

F
eb

ru
ar

y 
23

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016271118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016271118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2016271118/-/DCSupplemental
https://doi.org/10.1073/pnas.2016271118


Analysis of multidimensional heritability, denoted “h2-multi,”
demonstrated that interindividual differences in network to-
pography were significantly influenced by inherited genetics
(Fig. 3B; h2-multi: min = 0.12, max = 0.19, M = 0.14, SD = 0.015;
Dataset S1B), after accounting for multiple testing corrections
(Bonferroni false discovery rate correction, q’s < 0.05). Fig. 3C
displays the distribution of Dice coefficients reflecting interin-
dividual similarity of network topography defined across all 17
cortical networks (i.e., “Overall” in Fig. 3B). Dice similarity was
greater for monozygotic twins (left hemisphere [LH]: M = 0.70,
SD = 0.026; right hemisphere [RH]: M = 0.69, SD = 0.024) and
relative to dizygotic twins (LH: M = 0.66, SD = 0.028; RH: M =
0.65, SD = 0.028), siblings (LH: M = 0.66, SD = 0.026; RH: M =
0.65, SD = 0.028), and unrelated individuals (LH: M = 0.64,
SD = 0.027; RH: M = 0.063, SD = 0.026), corresponding to a h2-
multi of 0.146 and 0.143 for left and right hemispheres, respec-
tively. The degree of topographic heritability for each network was
consistent across hemispheres (Spearman’s rho = 0.68, P = 0.0032).
Contrary to estimates of individualized network size, the herita-
bility of network topographies did not differ between unimodal and
heteromodal networks (F(1,32) = 0.63, P = 0.54). We emphasize
that h2-multi is calculated from a matrix of subject-to-subject
pairwise similarities (i.e., Dice coefficients), reflecting the number
of vertices with the same network label between any given pair of
individuals. Because individual parcellations vary, the specific ver-
tices that contribute to any particular Dice coefficient vary as well.
Overall, these data advance a heritability estimation technique to
demonstrate that the spatial organization of functional networks is
influenced by genetic factors.

We next quantified local genetic control of network architec-
ture across the cortical sheet. Our findings detailed above show
that the heritability of network topography is uniform across
cortex when averaging within individual networks (Fig. 3). Prior
work, however, indicates significant spatial heterogeneity of
heritable aspects of cortical anatomy (56–58). Here, we dem-
onstrate that genetic influences on local network topography are
also spatially variable across cortex, with the greatest heritability
observed within the precuneus as well as dorsal aspects of pari-
etal, prefrontal, and posterior parietal cortices (Fig. 4A). Mul-
tidimensional heritability estimates were calculated in the same
manner as above, whereby a Dice coefficient matrix represented
the participant-to-participant similarity of network topography.
In this analysis, however, we only consider individualized net-
work labels falling within a given region of interest (ROI; ra-
dius = 10 vertices) at each point on the cortical sheet. Fig. 4B
illustrates example participant pairs with high and low Dice co-
efficients for an ROI in the precuneus. Critically, some partici-
pant pairs possess almost entirely nonoverlapping network
assignments within a given patch of cortex (Fig. 4B), highlighting
the need for individualized parcellations to study of neurobio-
logical variability across the population. Of note, we did not
observe a clear dissociation between unimodal and heteromodal
cortices in terms of local network heritability. That is, heritability
estimates did not differ between regions canonically associated
with sensorimotor networks (M = 0.150, SD = 0.037) relative to
association networks (M = 0.145, SD = 0.037; F(1,32) = 1.59, P =
0.12; Dataset S1 C and D). Together, these results indicate the
heritable basis of network organization is variable across cortex
and support further research into the biological determinants of
network topography.

Discussion
The use of population-average network templates has provided
foundational insights into the macroscopic functional organiza-
tion of the human brain. However, individual-specific features of
brain network architecture are obscured when collapsing data
across large groups of participants. Methodological advances
make it possible to measure individualized features of functional
networks in vivo, promising to yield biological insight into the ge-
netic, molecular, and cellular bases of cortical brain organization.
Here, leveraging a form of multidimensional heritability analysis,
we demonstrate that a substantial portion of the population-level
variability in the size and spatial arrangement of cortical networks
is under the influence of genetic factors. In HCP data (n = 1,023),
the size (i.e., cortical surface area) of individualized networks
showed considerable interindividual variation, which was most
pronounced in higher-order heteromodal relative to unimodal
sensorimotor networks (Fig. 1). We demonstrated that individu-
alized network size was heritable for all 17 examined cortical net-
works but was most pronounced within unimodal, relative to
heteromodal cortices (Fig. 2). Next, we established the heritability
of individualized network spatial organization, or topography, for
all cortical functional networks (Fig. 3). Although topographic
heritability was broadly consistent between cortical networks, we
observed substantial spatial heterogeneity in the influence of
genetic factors across the cortical sheet (Fig. 4). Together, this
work advances an analytic framework for measuring heritability of
multidimensional traits to establish the extent that individual-
specific features of functional network organization are influ-
enced by inherited genetics.
The estimation of the heritability of multidimensional traits,

such as the brain’s functional network architecture, is challenging
given that traditional approaches are designed for continuous
(e.g., height) or binary (e.g., diagnosis) phenotypes (59). In the
present study, we describe a method for estimating heritability
from any matrix of participant-wise similarity metrics. Dice co-
efficients were used to quantify between-participants similarity of
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(controlling for total surface area) was estimated across 17 canonical func-
tional networks using SOLAR (49), separately for each hemisphere. Error bars
reflect 95% CIs. (B) The amount of variance explained by genetics (h2) for
each network was consistent across hemispheres, as revealed by a correla-
tion of left- and right-hemisphere h2 values (r = 0.62, P = 0.0086). Each dot in
the correlation plot is a functional network. (C) Heritability of normalized
individual network size was higher among unimodal/sensory networks rel-
ative to heteromodal association networks (P = 0.025). Each dot represents
one of 17 cortical networks, split by hemisphere (n = 34). Hetero, hetero-
modal cortex; Uni, unimodal cortex.
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network topography, but this approach is generalizable to other
commonly studied neuroscientific phenotypes, such as patterns
of anatomical similarity (60) or morphometricity (61). We have
made the associated code freely available to the community
(https://github.com/kevmanderson/h2_multi), along with analytic
pipelines for all analyses. This work provides the basis for further
elaboration of multidimensional heritability techniques, such as
genetic correlation, that could reveal patterns of shared genetic
variance with psychological phenotypes (13, 42). Individualized
network parcellations also hold promise for understanding

psychiatric disorders (16), which are often heritable (62). Iden-
tifying shared genetic substrates between individualized features
of network organization and psychiatric illness will be important
as individualized approaches become increasingly adopted in
clinical neuroscientific research.
Here, we demonstrated that a significant proportion of the

variance in network size and topography is explained by genetics,
which could emerge through many possible biological pathways.
For instance, the individual differences in cortical arealization
that influence network organization may be determined early in
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Fig. 3. Individualized network topography is heritable across all networks. (A) The ridge plot displays distributions of interindividual Dice coefficients across
each network. Higher Dice coefficients reflect higher spatial overlap of a network for a given pair of individuals. Topography of unimodal networks were
overall more similar across individuals, relative to heteromodal cortex. (B) Significant heritability was observed across all examined 17 cortical networks (q <
0.01; range = 0.12 to 0.19, mean = 0.14), which was symmetric across hemispheres (rs = 0.68, P = 0.0032). (C) Boxplots show higher Dice similarity of overall
network organization between MZ pairs, relative to DZ, sibling, and unrelated participant pairings. (D) Individual examples illustrate HCP participants with a
high and low dice overlap for Default B (high = 0.78; low = 0.29) and Visual C (high = 0.93; low = 0.59) networks. SIB, sibling; UNR, unrelated.
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neurodevelopment. That is, the cellular fate and areal identity of
early cortical progenitor cells are specified in embryonic periods
by spatial gradients of molecular transcription factors (63, 64),
which may vary across individuals. The ability of genetic varia-
tion to shape these early developmental processes is supported
by a recent genome-wide association study (GWAS) document-
ing that common genetic polymorphisms linked to cortical sur-
face area were enriched among regulatory elements of neural
progenitor neural cells (65). The topography of cortical func-
tional networks may also be influenced by cortical neuroanat-
omy, such as cortical morphology and patterns of structural
connectivity. In this context, biomechanical processes such as
axonal tension, intracranial pressure, and the differential growth
of cortical layers are thought to influence cortical folding (51,
66), which may in turn constrain the topography of functional
networks. Further, the size and shape of functional network
boundaries may be sculpted by thalamocortical connections that
refine patterns of cortical arealization across development (54).
Experimentally modulating thalamic afferents can substantially
impact cortical morphology and size in a pathway specific man-
ner (67, 68). Critically, however, heritability analyses cannot
disentangle the specific biological processes that influence cor-
tical network size or topography. Rather, our data support the
importance of future work utilizing statistical genetic approaches
to identify the biological cascades that influence functional net-
work topography across the cortical sheet (65).
The emergence of analytic frameworks for capturing individu-

alized network architectures is both a technical and theoretical
advance, providing the opportunity to link cognition and behavior
to population-level variability in brain organization. Landmark
research has shown that individuals can be identified by patterns
of whole-brain functional connectivity, conceptualized as a func-
tional “fingerprint” (25, 32). The analogy to a fingerprint is apt.
For instance, broad classes of fingerprint types exhibit a high de-
gree of heritability, despite ridge patterns of any fingerprint being
entirely unique (69). Likewise, the brain is organized into a core
functional network architecture that nevertheless exhibits distinc-
tive features in a trait-like manner at the level of the individual
(40). Here, we demonstrate that the distinguishing topographic
features of the brain, including variability in network organization
and size, are influenced by inherited genetic factors (Fig. 3). Such
data provide a potential “upper bound” on the explainable vari-
ance because of additive genetic variation and highlight the utility
of future research probing the genetic mechanisms underlying
interindividual differences in functional network organization
across the lifespan.
Consistent with prior work examining population-average net-

work templates, the current study provides support for the genetic
bases of core features of brain function (28–30, 45, 70–72). The
degree of heritability for functional network size is in line with
prior estimates demonstrating that ∼40 to 60% of the variance in
within-network connectivity is explained by genetics (28, 29). Of
note, we emphasize that our data reflect a snapshot of heritability
estimates for a given sample in early adulthood and that the in-
fluence of genetic factors may vary across developmental periods
(73). Perhaps counterintuitively, phenotypic heritability generally
increases from childhood through adulthood, possibly reflecting
genotype–environment interactions as individuals engage in be-
haviors that reinforce genetically influenced traits (74). Although,
there is evidence that the reverse is true in late adulthood, such
that heritability decreases with age (75). Future work should also
examine whether environmental factors such as early life stress or
adversity may also impact cortical network topography and con-
nectivity (76). Experience is also critical for the emergence of
functional selectivity in some brain regions, such as the face-
responsive inferotemporal cortex, which may in turn influence
patterns of network connectivity and affiliation (77). Given recent
evidence of the developmentally dynamic nature of functional

network organization (42), it will be important to utilize imaging
genetic data, such as the Adolescent Brain Cognitive Development
(ABCD) study (78), to quantify the age-dependent influence of
genetic factors on cortical network formation.
Our twin and family-based analyses compliment GWAS studies

identifying structural genetic polymorphisms linked to functional
brain phenotypes, which are often defined according to template
or group-level network atlases (31, 79). These results motivate
further investigation into the genetic bases of individualized cor-
tical network properties using imaging genetic data, such as the
UK Biobank and ABCD study. The family-based heritability es-
timates described here are a first approximation of the upper
bound of variance that can be accounted for by common genetic
polymorphisms. However, additional GWAS studies are needed to
identify specific genetic variants and biological processes that may
influence cortical network topography.
Higher-order association networks are consistently more vari-

able than unimodal sensorimotor networks in terms of both relative
network size (Fig. 1C) and topographic network similarity (Fig. 3).
These observations are consistent with evidence that heteromodal
cortex has greater interindividual variance in functional connec-
tivity (43). The increased variability of heteromodal network size
coincided with lower estimates of heritability, relative to the indi-
vidualized size of unimodal networks (Fig. 2C). These data are in
line with theories that late-developing aspects of cortex are more
sensitive to environmental influences and extrinsic sources of net-
work sculpting (50). That is, higher-order networks are the most
distal (or “untethered”) from both early embryonic signaling gra-
dients and thalamus-mediated sensory inputs (50). However, we
did not observe heteromodal versus unimodal differences in heri-
tability for measures of network topography (Figs. 3 and 4) as we
did for individualized network size.
The present study should be interpreted in light of several limi-

tations. First, our analyses assume that participants have been
brought into a common anatomical space, but we cannot rule out
the role of interindividual differences in alignment accuracy. Here,
we used sophisticated surface-based alignment techniques from the
HCP that rely on multimodal areal features of cortex rather than
cortical folding patterns and anatomical landmarks (80). However,
interindividual alignment is still subject to error. We also emphasize
that heritability estimates of network topography are dependent
upon the accuracy and assumptions of the parcellation approach.
We also note that our heritability estimation, calculated from a
linear or nonlinear phenotypic similarity matrix, is equivalent to the
heritability of the intrinsic multidimensional trait that generates the
participant-wise phenotypic similarity (59) (see Methods) and is
therefore different from traditional heritability analysis of a scalar
phenotype (e.g., height) unless the similarity matrix is spanned by a
one-dimensional vector. Our analyses test whether the size of a
cortical network is under heritable genetic influence. Spatial network
topography differs from more commonly used measures of func-
tional connectivity strength; however, the two metrics are not nec-
essarily orthogonal. For instance, functional connectivity strength
may vary as a function of topographic network size, or vice versa.
Most individualized parcellation techniques are sensitive to func-
tional connectivity strength in addition to spatial organization, and
therefore future work is required to disentangle the interdependence
of functional network size and connectivity strength (13, 41).
In conclusion, this paper advances a multidimensional herita-

bility technique to establish the heritability of individualized cor-
tical functional networks in terms of both network size and
topography. We found that the size of heteromodal cortical net-
works was more variable and less heritable relative to unimodal
networks, in line with the protracted developmental maturation of
higher-order cortex that may allow for increased influence of the
environment. Individualized network topography was similarly
more variable among heteromodal networks, but heritability was
approximately equivalent for all cortical functional networks.
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However, heritability analysis of local network architecture revealed
a nonuniform influence of genetic factors on network organization
across cortex. Together, these data establish that the size and to-
pography of cortical functional networks are influenced by genetic
factors, providing a foundation for future work disentangling the
biological mechanisms that govern individual variances in brain
organization.

Methods
HCP. The HCP is a large community-based sample of twins and nuclear family
members, assessed on a comprehensive set of neuroimaging and behavioral
batteries. HCP analyses initially comprised 1,029 participants that were suc-
cessfully processed through the individualized network parcellation approach
of Kong and colleagues (13) known as the MS-HBM. HCP twin zygosity was
determined by genotyped data when possible (n = 410), otherwise self-report
was used to identify pairs of monozygotic (MZ) and dizygotic (DZ) twins (n =
76). If imaging data were not available for one twin in a pair, the usable
participant was designated a “singleton” for later heritability analyses. The
final sample consisted of n = 1,023 individuals (nMZ = 274; nDZ = 160, nnontwin =
482, nsingleton = 107). See Table 1 for basic demographics across groups.

Measuring Individualized Network Organization and Size. Individualized net-
work parcellations were derived from HCP rs-fMRI surface data, aligned to the
fs_LR32k group space using the Multimodal Surface Matching (MSM) All areal
feature-based registration (81). Methodological details of the MS-HBM ap-
proach that produced the individualized parcellations have been previously
published (13); however, we present key details here. Multiband rs-fMRI data
collected on Siemens 3T Skyra scanners from the HCP S1200 release were
analyzed. A key feature of the MS-HBM approach is that it incorporates both
intraindividual and interindividual patterns of variability to define individu-
alized network boundaries. HCP data are particularly suited for this method
since rs-fMRI runs were collected across two separate sessions across 2 d,
allowing for well-powered estimates of inter- and intraindividual variance.
Individual resting-state runs were 15 min in length and were acquired at an
isotropic resolution of 2 mm and TR of 0.72 s (82, 83). Surface-based pre-
processing of rs-fMRI data began with minimally preprocessed HCP MSMAll
FMRIB’s independent component analysis (ICA)-based X-noiseifier (ICA-FIX)
data on a group surface template [fs_LR32k (84)]. Additional preprocessing
included nuisance regression, temporal censoring, and spatial smoothing.

A held-out training set of 40 HCP participants were used to derive the
necessary group-level parcellation (Fig. 1A) and model parameters, such as
interindividual variability, for the MS-HSM method. For each participant, each
of the 59,412 bihemispheric vertices on the cortical sheet was assigned to one
of the 17 canonical functional networks (8). Individualized parcellations were
transformed from the fs_LR32k to the fsaverage6 group template using the
HCP workbench. The surface area of each individualized cortical parcel was
then estimated using FreeSurfers mris_anatomical_stats utility. The size of
each cortical network for an individual was estimated as the summed surface
area of all network vertices. Network size was calculated separately for each
hemisphere and then divided by total hemispheric area to quantify propor-
tional size of a network on the cortical sheet. All cortical surface figures were
created using the HCP workbench (85).

Heritability of Individualized Network Size. The heritability of individualized
network size was estimated using SOLAR (49), covarying for age, sex, age2,
age × sex, age2 × sex, total surface area, and FreeSurfer-derived intracranial
volume. Bonferroni correction of significance thresholds was used to account
for 34 independent tests of heritability. Cross-hemisphere consistency (Fig. 2B)
was tested by correlating left- and right-hemisphere heritability estimates
across all 17 cortical networks.

Dice Similarity of Network Topography. Participant-to-participant similarity of
individualized network topography was measured using the Dice–Sørensen
formula, where the coefficient for a given network reflects the following:

Dice  Similarity  =  
2|Xi∩Yi |
|Xi | + |Yi |,

where Xi and Yi are the network labels for network i for participants X and
Y, ∩ represents the intersection between participant network labels, and | · |
represents the total number of vertices in each set (i.e., cardinality).

Multidimensional Heritability Analysis. Consider an M-dimensional trait
Y = [y1, . . . , ym] = [yim]N×M and a multivariate variance component model:
Y = G + E, where G and E are N ×M matrices representing the additive genetic
effects and unique environmental factors, respectively. Assume
vec(G) ∼ N(0,ΣG ⊗K), vec(E) ∼ N(0,ΣE ⊗ I), where vec(⊗ ) is the matrix vec-
torization operator that converts a matrix into a vector by stacking its columns,
⊗ is the Kronecker product of matrices, ΣG is the genetic covariance matrix, and
ΣE is the environmental covariance matrix. The genetic and environmental co-
variance matrices can be estimated using a moment-matching method:

Σ̂G = 1
vk
Y⊤(K − τI)Y ,   Σ̂E = 1

vk
Y⊤(κI − τK)Y, where τ = tr(K)=N, κ = tr(K2)=N,

vK = N(κ − τ2) (59). The single nucleotide polymorphism (SNP) heritability of a

multidimensional trait Y is defined by ĥ2 = tr(Σ̂G)
tr(Σ̂G) +  tr(Σ̂E ) (58). Note

thattr(Σ̂G) = 1
vK
tr[(K − τI)YY⊤] = 1

κ−τ2 tr[(K − τI)Σ̂P], where Σ̂P = YY⊤=N is the

estimated phenotypic covariance matrix. Similarly, tr(Σ̂E) = 1
κ−τ2 tr[(κI − τK)Σ̂P].

For any nonnegative definite phenotypic similarity matrix Λ̂P derived from a

nonlinear measure, we define heritability by replacing Σ̂P with Λ̂P. This is known
as the kernel trick in machine learning. We note that for any N × N nonnegative
definite matrix Σ, there exists a N × Pmatrix V (often P ≪ N) such that Σ ≈ VV⊤.
Therefore, Σ can be considered as a linear covariance matrix generated by a
multidimensional trait.

To model covariates, consider a multivariate mixed effects model:
Y = XB + G + E, where X is an N × q matrix of covariates, and B is a q ×M
matrix of fixed effects. There exists an N × (N − q) matrix U satisfying

U⊤U = I, UU⊤ = P0 = I − X(X⊤X)−1X, and U⊤X = 0. Applying U⊤to both sides
of the model gives U⊤Y = U⊤G + U⊤E, where vec(U⊤G) ∼ N(0,ΣG ⊗ (U⊤KU)),
vec(U⊤E) ∼ N(0,ΣG ⊗   I). Therefore, we can replace Y with U⊤Y, K with U⊤KU,
and N with N − q in the SNP heritability estimator derived above to obtain

an estimator that accounts for covariates. More specifically, tr(Σ̂G) =
1

κ−τ2 tr[(K − τI)P0Σ̂PP0], tr(Σ̂E) = 1
κ−τ2 tr[(κI − τK)P0Σ̂PP0],   τ = tr(KP0)=(N − q)),

and κ = tr(KP0KP0)=(N − q). For nonlinear phenotypic similarity matrix Λ̂P,

we replace Σ̂P with Λ̂P.
Significance was measured using subject-based permutations in which the

kinship matrix was randomly shuffled 1,000 times. SEs were calculated using
a block jackknife procedure with a leave one family out strategy. That is, for
a given iteration of the jackknife, all participants within a nuclear family unit
were excluded and heritability was recalculated. Variability was then cal-
culated from the resulting distribution of subsampled heritability estimates.

Data Availability. All custom code written to perform analyses are publicly
available on GitHub (https://github.com/kevmanderson/heritable_network_
topography). We have also provided an open-access generalized imple-
mentation of our multidimensional heritability estimator (https://github.
com/kevmanderson/h2_multi). Code to produce individualized MS-HBM
parcellations is publicly available (https://github.com/ThomasYeoLab/CBIG).
The HCP data used in this study are available through the database at
https://db.humanconnectome.org/.

Table 1. HCP group demographics

MZ DZ Nontwin Singleton F P

n 274 160 482 107
Age 29.0 (SD = 3.36) 29.4 (SD = 3.61) 28.4 (SD = 3.86) 28.3 (SD = 3.71) F3,1019 = 4.62 0.003
Sex F = 59.9% F = 61.2% F = 49.6% F = 48.6% F3,1019 = 4.10 0.006

Heritability estimates were conducted on 1,023 HCP participants, composed of 137 MZ twins (n = 274), 80 DZ
twins (n = 160), nontwin siblings (n = 482), and unrelated singletons (n = 107). Although groups were nominally
well matched demographically, ANOVAs revealed significant differences of age and sex. All heritability analyses
included age and sex as covariates.
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