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Dimech CJ, Anderson JA, Lockrow AW, Spreng RN, Turner
GR. Sex differences in the relationship between cardiorespiratory
fitness and brain function in older adulthood. J Appl Physiol 126:
1032–1041, 2019. First published January 31, 2019; doi:10.1152/
japplphysiol.01046.2018.—We investigated sex differences in the
association between a measure of physical health, cardiorespiratory
fitness (CRF), and brain function using resting-state functional con-
nectivity fMRI. We examined these sex differences in the default,
frontoparietal control, and cingulo-opercular networks, assemblies of
functionally connected brain regions known to be impacted by both
age and fitness level. Healthy older adults (n � 49; 29 women) were
scanned to obtain measures of intrinsic connectivity within and across
these 3 networks. We calculated global efficiency (a measure of
network integration) and local efficiency (a measure of network
specialization) using graph theoretical methods. Across all three
networks combined, local efficiency was positively associated with
CRF, and this was more robust in male versus female older adults.
Furthermore, global efficiency was negatively associated with CRF,
but only in males. Our findings suggest that in older adults, associa-
tions between brain network integrity and physical health are sex-
dependent. These results underscore the importance of considering
sex differences when examining associations between fitness and
brain function in older adulthood.

NEW & NOTEWORTHY We examined the association between
cardiorespiratory fitness and resting state functional connectivity in
several brain networks known to be impacted by age and fitness level.
We found significant associations between fitness and measures of
network integration and network specialization, but in a sex-depen-
dent manner, highlighting the interplay between sex differences,
fitness, and aging brain health. Our findings underscore the impor-
tance of considering sex differences when examining associations
between fitness and brain function in older adulthood.

aging; brain networks; fMRI; network efficiency; physical fitness;
resting-state functional connectivity

INTRODUCTION

Physical exercise improves brain physiology, structure, and
function in older adulthood (14, 45). Exercise has been shown
to influence neural growth factors and enhance processes such
as angiogenesis, synaptogenesis, and neurogenesis (16; but
see 73). These changes are also measurable at a systems level,

impacting cortical structure and function (25, 54). Cardiorespi-
ratory fitness (CRF), a measure of physical fitness indexing
oxygen consumption and transport (41), has been associated
with greater gray matter volume and density in frontal and
parietal cortices as well as increased hippocampal volumes (12,
24, 36, 84). These changes are associated with higher cognitive
functioning, particularly in domains most susceptible to age-
related decline, including executive functioning and memory
(14, 19, 84).

CRF is also related to changes in the functional architecture
of the brain measured at rest (83). Estimates of resting-state
functional connectivity (RSFC) characterize coherent patterns
of intrinsic neural activity in the absence of explicit task
demands. RSFC measures have been used to study brain health
both in typical and atypical aging (20). RSFC is thought to
reflect repeated patterns of coherent neural oscillatory activity
reinforced across time and thus provides a stable, neurophys-
iological marker of brain function (6; also see Ref. 77 for a
review). Thus, measures of RSFC are useful neural markers for
assessing the impact of systemic lifestyle influences, such as
CRF, on brain function. Furthermore, RSFC measures are readily
obtained in older adult populations and have been shown to be
both replicable (7, 42) and reliable (72, 87).

RSFC is altered in normal aging (e.g., 13, 30, 31), and these
changes appear to target functional connectivity within and
between networks associated with higher-order cognitive func-
tioning (30, 31). The default, frontoparietal control, and cin-
gulo-opercular networks have been particularly implicated (30,
31). The default network consists of the ventromedial prefron-
tal cortex (PFC), posterior cingulate and retrosplenial cortex,
inferior parietal lobule, lateral temporal cortex, dorsomedial
PFC, and the hippocampal formation, among others (9). This
network is implicated in internally focused cognitive processes
(8, 40). The frontoparietal control network is composed of
anterior and dorsolateral PFC, anterior inferior parietal lobule,
anterior cingulate, and insular cortices and is associated with
intrinsic (i.e., top down) cognitive control processes (22, 79).
Finally, the cingulo-opercular network (22), which encom-
passes anterior insula/operculum, thalamus, and the dorsal
anterior cingulate cortex, is associated with sustaining cogni-
tive set as well as external or salience-driven (i.e., bottom up)
attentional processing. Common age-related changes across
these networks include reduced within, or local, connectivity
and increased between, or more global, connectivity (39).
More broadly, aging is associated with greater overall network
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integration and reduced functional segregation, as well as
reduced connectivity within networks (13, 30, 31, 74, 83).

Functional connectivity of the default, frontoparietal, and
cingulo-opercular networks is also modulated by fitness and
activity levels in older adulthood (80, 81, 83). CRF has been
positively associated with global efficiency, a measure of network
integration and distributed processing, and negatively associated
with local efficiency, a measure of within-network segregation
and regional specificity across the whole brain (47; see Ref. 67
for a review of network measures). These findings suggest that
greater CRF is associated with increased network integration
and reduced segregation between networks in older adults (47).
However, the evidence remains equivocal. Local, or less-distrib-
uted, processing has also been positively associated with
exercise levels (43, 44).

There is evidence for a relationship between RSFC and CRF
in older adulthood and evidence of sex differences in functional
brain aging, yet sex differences in the relationship between CRF
and brain function in older adulthood have not been investigated.
Older men and women show differential benefits in cognitive
performance associated with exercise and fitness levels. Studies
with a greater proportion of female participants report greater
cognitive gains (14). A recent meta-analysis reported greater
exercise-related cognitive benefits in women (4), yet the neural
basis of sex differences in the relationship between fitness
and brain function in older adults has not been directly
explored.

To address this gap, here we investigate sex differences on
the impacts of CRF on RSFC in older adults. We examine this
relationship specifically focusing on three higher-order associ-
ation networks (13) that have been most reliably associated with
changes both in aging and fitness levels: the default network,
frontoparietal control network, and cingulo-opercular network.
We hypothesize that local, or greater within-network, connec-
tivity would be associated with higher CRF levels in older
adults (43, 44). As there are no studies investigating sex
differences in the association between RSFC and CRF, we are
unable to pose specific hypotheses. However, greater exercise-
related cognitive benefits have been observed in older women
(4). This suggests that patterns of functional brain activity
associated with better cognitive performance, i.e., increased
local efficiency, should be more reliably observed in women.

METHODS

Ethical Approval (Human Subjects)

All procedures performed in studies involving human participants
were in accordance with the ethical standards of the institutional
research committee and with the 1964 Declaration of Helsinki and its
later amendments or comparable ethical standards.

Informed Consent

Written informed consent was obtained from all individual partic-
ipants included in the study.

Participants

Fifty-one older adults participated in this study and were recruited
from the community in Ithaca, New York. All participants were
healthy, over the age of 60, had normal or corrected-to-normal visual
acuity, and had no history of psychiatric, neurological, or other
medical illness that could compromise cognitive functions. In addition

to the inclusion criteria noted above, participants were required to
have Geriatric Depression Scores �9 (i.e., within the “normal” range;
86) as well as Mini-Mental State Exam scores of �25 (26) to be
eligible. Two participants were excluded at this point because of
elevated scores on the Geriatric Depression measure, resulting in a
final sample of 49 older adults (age mean: 67.25 yr, SD � 5.44; years
of education: 17.06 yr, SD � 2.77; 29 women). All procedures per-
formed in the studies were approved by the Institutional Review
Board at Cornell University and are in accordance with the ethical
standards described in the 1964 Declaration of Helsinki and its later
amendments or comparable ethical standards. Participants gave writ-
ten informed consent in accordance with the Institutional Review
Board of Cornell University.

CRF Assessment

Our CRF metric was derived using a formula developed by Jurca
and colleagues (46). This formula takes a participant’s height, weight,
age, sex, resting heart rate, and self-reported physical activity level to
derive a CRF score in metabolic equivalents (1 metabolic equiva-
lent � 3.5 ml O2 uptake·kg body mass�1·min�1). The metabolic
equivalent values derived from the formula have been validated in a
population of older adults (57) and significantly correlated with explicitly
recorded metabolic equivalent values from the maximal graded exercise
test and with CRF estimates derived from submaximal field testing. The
formula was further validated by McAuley and colleagues (59) and
significantly correlated with a physician-supervised maximal exercise test
and a one-mile timed walk. The authors also reported that formula-
derived CRF estimates were significantly correlated with cognitive
function, hippocampal volume, and memory complaints consistent
with the timed walk and exercise-derived fitness measures (59).
Height and weight were obtained during the MRI safety protocol at
time of scanning and were self-reported. In accordance with previous
studies using this measure (46, 57, 59), participants self-reported their
level of physical activity given a scale of 1–5 with predetermined
descriptions as outlined in the original protocol by Jurca and col-
leagues (46). For example, an activity level of 3 requires participation
in aerobic exercise (such as brisk walking, swimming, or jogging) at
a comfortable pace for 20–60 min per week (46). Although this
self-report component may impact the reliability of the measure (64),
our approach is consistent with earlier validation studies (57, 59).
Resting heart rate was obtained using Biopac Systems Software
obtained during resting-state MRI scanning (Biopac Systems).

Neuroimaging

Structural imaging acquisition, preprocessing, and analysis. Ana-
tomical scans from the Cornell MRI facility were acquired on a
GE750 Discovery series 3T scanner with a T1-weighted volum-
etric MRI magnetization-prepared rapid gradient echo [repetition
time: 2,500 ms; echo time [TE]: 3.44 ms; flip angle: 7°; 1.0 mm
isotropic voxels, 176 slices]. Anatomical scans were acquired during
one 5-m, 25-s run with �2 acceleration with sensitivity encoding.
Structural data were corrected for nonuniform intensities, affine-
registered to Montreal Neurological Institute atlas (15), and skull-
stripped using Freesurfer (Athinoula A. Martinos Center for Biomed-
ical Imaging, Harvard University, Cambridge, MA).

Functional imaging acquisition, preprocessing, and analysis. Multi-
echo functional images were acquired during two 10-m, 6-s resting-
state scans. Participants were instructed to keep their eyes open,
blinking and breathing normally. Multi-echo fMRI is a data acquisi-
tion sequence developed to enhance the blood oxygenation level
contrast (49, 50). This method uses multiple echoes obtained at
different TEs corresponding to different T2* weighted tissue relax-
ation rates (51). After recombining the echo times, independent
components analysis is used to remove noise components (i.e., orig-
inating in white matter, CSF, movement, etc.) which are now more
readily identifiable because of the greater signal contribution from the
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varying TEs. This procedure, known as multi-echo independent compo-
nents analysis (ME-ICA), can render up to fourfold increases in the
temporal signal-to-noise ratio (51). Resting-state functional scans were
acquired using a multi-echo echo planar imaging sequence with online
reconstruction (repetition time: 3,000 ms; TE: 13.7 ms, 30 ms, and
47 ms; flip angle: 83°; matrix size: 72 � 72; field of view: 210 mm;
46 axial slices; 3.0-mm isotropic voxels) with �2.5 acceleration
with sensitivity encoding.

Preprocessing was conducted with ME-ICA version 2.5 (49, 50)
((https://afni.nimh.nih.gov/pub/dist/src/pkundu/meica.py). The full ME-
ICA preprocessing procedure has been described previously (75). Fol-
lowing ME-ICA, we identified nuisance components using a semiau-
tomated procedure. This involved conducting a probabilistic indepen-
dent components analysis (5) via multivariate exploratory linear
decomposition into independent components (MELODIC) version
3.14, part of FSL (FMRIB Software Library, www.fmrib.ox.ac.uk/
fsl), to isolate and extract remaining noise components following the
ICA preprocessing.

Based on previous evidence of age-associated declines in RSFC
(13, 30, 39, 83) or fitness-related modulation of network integrity
(80, 81, 83), the default, cingulo-opercular, and frontoparietal
control networks were selected a priori as our networks of interest.
We used previously defined regions of interest (ROIs) based on a
resting-state cortical parcellation (37). This parcellation was de-
rived using resting-state data and has 333 ROIs, providing suffi-
cient resolution to capture individual differences prominent in
aging (27) and to avoid compromising sensitivity and blurring
regional boundaries when networks are decomposed into simpler
parcellations (63). Connectivity analyses were conducted using the
Matlab-based Brain Connectivity Toolbox (67, 68; http://www.
brain-connectivity-toolbox.net/). For a detailed description of this
procedure, see Rubinov and Sporns (67, 68).

Preprocessed resting data were coregistered with the Montreal
Neurological Institute-transformed anatomical scan within subjects.

We identified the three a priori-selected networks corresponding to
105 ROIs (37; 41 default, 24 frontoparietal, and 40 cingulo-opercular
nodes). Regions corresponding to these networks are illustrated in Fig.
1. Time courses were extracted for each ROI, and a node-wise correlation
matrix was created. The matrices were thresholded using a cost density
function (averaged over a range of 0.10 – 0.3, steps of 0.01). These
values were used to calculate our topological parameters of inter-
est.

Functional connectivity metrics. To measure the integrity of func-
tional brain networks, we used graph theoretical measures. Graph
theory depicts the brain as a set of interacting nodes and edges. In a
functional data set, “nodes” represent brain regions and “edges” represent
the strength of functional coupling between those regions (10, 67).
Examining the temporal nature of cross-correlations in the blood oxy-
genation level signal between nodes allows us to index the intrinsic
functional architecture of the brain (67).

To capture changes in overall network connectivity, we derived
estimates of global efficiency (to assess network integration or dis-
tributed processing) and local efficiency (to assess network segrega-
tion or more regional processing specificity). Global efficiency is the
average inverse shortest path length in the network (52). In other
words, it is derived by examining the connectivity between each node
and every other node and averaging the inverse of this measure for all
nodes in the network. Global efficiency was calculated using the Brain
Connectivity Toolbox (67, 68) and is represented in equation form
below:

Eglob�i� �
1

N�N � 1��i�j

1

dij
,

where dij is the shortest path (smallest number of edges) between
nodes i and j (21).

Local efficiency is a measure of functional segregation. Unlike global
efficiency, local efficiency measures only the edges connecting direct
neighbor nodes and thus quantifies the average efficiency of local
subgraphs (52). A network with high local efficiency then describes a
topological organization with notable segregated neural processing,
which is believed to underlie functional specialization (67). Local
efficiency was also calculated in the Brain Connectivity Toolbox and
is represented here:

Elocal �
1

NGi�NGi
� 1��j,k

1

Lj,k
,

where NGi
is the number of nodes in the subgraph Gi. Local efficien-

cies for each node can be averaged over all nodes to estimate the mean
local efficiency of the graph.

Statistical Analyses

Statistical analyses were conducted in R (version 3.3.2) using the
RStanArm package and default settings (76). This software was used
to fit two linear Bayesian models using the Markov Chain Monte
Carlo algorithm to the data evaluating the impact of CRF of brain
network metrics (global and local efficiency were fit separately) for
men and women.

Fig. 1. Visualization of our networks of interest. Regions of interest for the
default (DN), cingulo-opercular (CO), and frontoparietal (FPCN) control
networks were taken from a resting-state parcellation by Gordon and col-
leagues (37) and are represented as spheres. For illustrative purposes, regions
of interest were superimposed on an overlay (85) to validate functional
network assignment. Figure was created using Connectome Workbench (58).

Table 1. Descriptive statistics

Variable Female Mean Female SD Male Mean Male SD � Difference SD Difference HDI Lower HDI Upper

CRF 6.09 0.27 9.06 0.31 �2.97 0.41 �3.77 �2.15
Education 16.86 0.49 17.29 0.78 �0.43 0.93 �2.21 1.42
Age 66.28 0.94 68.37 1.52 �2.08 1.79 �5.57 1.44
MMSE 28.05 0.28 28.18 0.36 �0.13 0.46 �1.02 0.76

Difference scores and HDIs refer to Bayesian posterior density estimates of the difference between groups. For mean and SD, CRF values are in metabolic
equivalents, and age and education values are in years. CRF, cardiorespiratory fitness; HDI, highest density interval; MMSE, Mini-Mental Status Exam.
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For each model, the outcome variable of interest was the network
connectivity metric (either local or global efficiency), and the predic-
tors were CRF, sex, and the interaction between CRF and sex. Age and
education were included as covariates of no interest. Log10 transforma-
tions were used to correct variables that did not meet the assumptions for
normality before analysis. Evidence for the role of sex was assessed
using posterior distributions from each model along with 95% cred-
ible intervals and posterior probabilities. This information allows us to
determine whether we can reasonably expect to exclude a null finding
from our data (i.e., if the 95% credible interval includes 0, we cannot
preclude the possibility of no difference). More useful, however, is that
posterior distributions can determine exact probabilities for the effect of
interest (e.g., “there was an 85% chance that the effect was greater than
0”). Such information is useful, as it helps to quantify the degree of
uncertainty in the data.

RESULTS

Behavior

A summary of the demographic and behavioral data can be
found in Table 1. We report Bayesian estimates of the posterior
difference between groups (i.e., a Bayesian t-test) along with
95% credible highest density intervals (HDIs). Posterior cred-
ible intervals excluded zero for only one estimate. First, men
had higher CRF levels than women (� difference: �2.97; 95%
HDI: �3.77, �2.15), corresponding to an effect size of d � �2.2.
There were no sex differences in self-reported physical activity
levels, education levels, or intelligence quotient (credible intervals
included 0, and all effect sizes � �0.45). Descriptive statistics for

Table 2. Global and local efficiency across networks

Variable Female Mean Female SD Male Mean Male SD � Difference SD Difference HDI Lower HDI Upper

LE All 0.750 0.005 0.749 0.006 0.001 0.008 �0.013 0.017
FPCN LE 0.693 0.013 0.718 0.019 �0.025 0.023 �0.071 0.020
DN LE 0.711 0.008 0.721 0.006 �0.010 0.010 �0.030 0.008
CO LE 0.693 0.008 0.708 0.012 �0.015 0.014 �0.042 0.014
GE All 0.533 0.003 0.531 0.004 0.002 0.005 �0.007 0.011
FPCN GE 0.425 0.007 0.404 0.009 0.022 0.012 �0.001 0.045
DN GE 0.477 0.007 0.470 0.006 0.007 0.009 �0.011 0.025
CO GE 0.477 0.006 0.479 0.007 �0.003 0.009 �0.020 0.016

Global and local network statistics are presented by group within and across the networks of interest. Difference scores and HDIs refer to Bayesian
posterior density estimates of the difference between groups. CO, cingulo-opercular network; DN, default network; FPCN, frontoparietal control network;
GE, global efficiency; GE All, global efficiency for all networks; HDI, highest density interval; LE, local efficiency; LE All, local efficiency for all
networks.

Fig. 2. Bayesian linear model of the relationship be-
tween CRF and local efficiency by sex. A: linear rela-
tionship between CRF and local efficiency by group
(shaded regions represent standard errors). B: posterior
distributions of intercepts for each group (F, M). Num-
bers appended to the plot are the median posterior
density values. C: posterior difference between the
group intercepts, along with a 95% credible interval and
posterior probabilities (i.e., there is an 88% probability
that women have higher local efficiency values than
men). D: posterior distributions for the model slopes by
group. E: posterior difference as described above for the
intercepts. CRF, cardiorespiratory fitness; F, female; M,
male.
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network efficiencies are available in Table 2. Men and women did
not reliably differ on any of these network metrics (all 95% HDIs
include 0).

CRF and Network Connectivity

Global efficiency and local efficiency were computed for
nodes within the three networks of interest (the default, fron-
toparietal control, and cingulo-opercular networks). Age and
education were included as covariates in all graph theory
analyses.

Local efficiency. As described earlier, we first ran a Bayesian
linear model predicting local efficiency with sex as the be-
tween-groups variable, CRF as a continuous predictor variable,
and age and education as controls (Fig. 2). The main effect of
CRF was not reliably different from zero [b � 0.004, 95% HDI
(�0.002, 0.010)], nor was the main effect of sex [b � �0.04,
95% HDI (�0.11, 0.03)], though in this case there was an 88%
posterior probability that women had higher local efficiency
values than men (Fig. 2B). The interaction between sex and
CRF (i.e., the difference of slopes) did not reliably differ by sex
[b � 0.003, 95% HDI (�0.005, 0.01)], though again, posterior
probabilities suggest that men are 76% more likely than women
to have a stronger positive relationship between CRF and
local efficiency.

As posterior values for each group were included as part of
the specification for the original model, these distributions
could be extracted and examined separately without the need
for post hoc tests. The median posterior slope value for men
was 0.007, with a 95% HDI that excluded 0 (0.0003, 0.014);
indeed, posterior probabilities suggest a 97% likelihood that
the slope value for men is greater than 0, and the posterior R2

value for this group was 0.34. The median posterior slope value
for women was lower, 0.004, and had a 95% HDI that included
0 (�0.002, 0.011). For women, the posterior probability that
their slope is greater than 0 is 90%, and the posterior R2 value
for this group was 0.21. The posterior probability distributions
suggest that there is a 75% probability that men had steeper
slope values than women, indicating that CRF has a similar
positive effect on local efficiency across networks for both
sexes but that this association is more robust in men than in
women. Critically, the relationship across the groups is weaker
than the relationships observed within the groups, resulting in
a failure to observe a reliable relationship between CRF and
local network efficiency across the full sample (Fig. 3).

Global efficiency. Next, we ran a similar Bayesian linear
model predicting global efficiency. The model was defined as
above, but with global efficiency as the outcome. As with local
efficiency, the main effect of CRF was not reliably different
from 0 [b � �0.002, 95% HDI (�0.006, 0.001)]. There was a
marginal main effect of sex [b � 0.031, 95% HDI (�0.007,
0.07)]. This was associated with a 94% likelihood that men
have higher global efficiency values than women (Fig. 4). The
interaction between CRF and sex again was marginally reliable
[b � �0.003, 95% HDI (�0.008, 0.002]; however, the poste-
rior probability that men had a steeper negative slope than
women was 90%. Given the posterior probability values, we
again examined the posterior slope distributions separately by
sex. Men had a median posterior slope value of b � �0.005
with a 95% HDI of (�0.0092, �0.00094) and a posterior R2

value of 0.35, suggesting that for this group the slope was

reliably different from 0. By contrast, women had a median
posterior slope value of b � �0.002 with a 95% HDI of
(�0.006, 0.001) and a posterior R2 value of 0.27, suggesting a
weaker, nonreliable relationship for this group.

DISCUSSION

CRF is frequently cited as a modifiable lifestyle factor that
is associated with brain health in older adulthood (11, 41, 80,
82). This study investigated the relationship between CRF and
RSFC and how these associations differ for men and women.
Across the default, frontoparietal control, and cingulo-opercu-
lar networks, CRF levels were positively associated with local
network efficiency, a measure of regional connectedness, and
negatively associated with global efficiency, a measure of
overall network integration. However, these associations were
less reliable across the entire participant sample (Fig. 3). These
findings reflect the Simpson’s paradox (34), wherein associa-
tions within groups are lost when combined into a single
sample. This result speaks directly to the importance of con-
sidering sex in research that examines relationships between
exercise and brain function. Analyses by sex revealed a posi-
tive relationship between CRF and local network efficiency
and a negative relationship with global efficiency, but these
associations were only reliably observed for men. Women
showed a similar overall pattern, with positive associations
between CRF and local efficiency and negative associations
with global efficiency; however, the associations were weaker
and were not reliably different from zero. The results show that
physical fitness is related to functional connectivity of the brain

Fig. 3. Illustration of the relationship between CRF and network efficiencies
demonstrating Simpson’s paradox. A: relationship between CRF and local
efficiency which, when combined across sexes, is not reliably different from
zero (shaded regions represent standard errors). B: same relationship between
CRF and local efficiency which, when stratified, is reliably different from zero
in males. C and D: same effect as applied to global efficiency. CRF, cardio-
respiratory fitness; F, female; M, male.
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in older adults during the resting state; however, these associ-
ations are sex-specific.

Older adults who are more physically fit have greater local
efficiency among functionally connected brain regions and
show stronger connections within discrete brain networks (83).
This trend toward greater local efficiency in fit older adults
contrasts with typical age-related shifts from local to more
global efficiency, signaling increasingly dedifferentiated net-
work connections with age (13, 20, 30, 39, 60, 75). In this
context, the findings of the current study and others (e.g., 43)
suggest that remaining physically fit may help to sustain a
“younger” network architecture into later life. Furthermore,
these associations may be neuroprotective, as greater local
processing has been associated with better executive function-
ing (3, 43) in older adults and is positively predictive of
cognitive gains following both cognitive training (2, 29) and
exercise interventions (3).

Our findings of an association between CRF and increased
local efficiency differ from that of a recent report by Kawagoe
and colleagues (47). In their study, lower local efficiency and
greater global efficiency was observed for more fit older adults.
This efficiency pattern was also associated with better cogni-
tive functioning, which the authors interpreted as a fitness-
related pattern of compensatory network changes. Although
they did not stratify their sample by sex, potentially masking
the sex differences we report here, other methodological dif-
ferences may have contributed to these divergent findings. We
examined network efficiencies within and among three a priori-
identified associative networks with a denser array of function-
ally defined nodes in contrast to a whole brain, structurally

defined node array (47). These differences in network identi-
fication may have enhanced our capacity to identify network-
specific associations between RSFC and fitness levels. Further-
more, unlike a network compensation account (47), our find-
ings are consistent with studies suggesting that decreased local,
or segregated, network organization and increased global, or
dedifferentiated, networks are associated with age-related de-
cline (20, 38, 74). However, given the correlational nature of the
study, further work will be necessary to determine the causal
impact of CRF in later life. Specifically, it will be important to
investigate whether CRF promotes a more “young-like” func-
tional architecture or a compensatory pattern of dedifferentiated
network connectivity. Furthermore, although the focus of this
study was to elucidate sex differences in the impact of CRF
on brain function specifically, the role of network efficiency
as a mediator between CRF and cognitive functioning is an
important future direction.

Future research will also be necessary to more fully eluci-
date sex differences in the relationship between CRF and brain
function. As we observed here, sex-dependent associations
exist between CRF and RSFC in brain networks that are most
susceptible to change with age and fitness levels. It is well
established that brain structure and function are sexually di-
morphic (1, 18, 32, 33, 55, 56, 78). These sex differences
persist into older age and have been observed during the resting
state. In this context, sex differences might also be expected in
the relationship between RSFC and CRF in later life. Our
findings suggest that this is indeed the case. Men, but not
women, showed reliable and robust associations between CRF
and measures of network connectivity in older adults. This sex

Fig. 4. Bayesian linear model of the relationship be-
tween CRF and global efficiency by sex. A: linear
relationship between CRF and global efficiency by
group (shaded regions represent standard errors). B:
posterior distributions of intercepts for each group (F,
M). Numbers appended to the plot are the median
posterior density values. C: posterior difference be-
tween the group intercepts, along with a 95% credible
interval and posterior probabilities (i.e., there is a 94%
probability that men have higher global efficiency val-
ues than women). D: posterior distributions for the
model slopes by group. E: posterior difference as de-
scribed above for the intercepts. CRF, cardiorespiratory
fitness; F, female; M, male.
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difference is consistent with reports of sex-dependent associ-
ations, favoring men, in the relationship between fitness levels
and peripheral physical and central nervous system function in
older adults (65, 66, 71; also see Refs. 28 and 61 for reviews).
However, to our knowledge, these sex differences have not
previously been investigated at the level of large-scale cortical
networks.

An obvious next question is why this CRF and RSFC
association was only reliable for men in our sample. We
hypothesized effects favoring women given research demon-
strating stronger associations between fitness and cognition in
women (4). However, it is important to reiterate that previous
studies have not examined sex differences on the impact of
fitness at the level of brain function (but at the level of overt
cognition). Thus, we are the first to investigate (and interpret)
sex differences in this domain. Based on our results, we
suggest that the stronger association observed in men is the
result of a more rapid shift toward global efficiency among
these associative brain networks in men versus women. Age-
related declines in brain structure and function are known to
occur more rapidly in men, particularly among association
regions and related brain networks, which were the focus of the
current study (62, 88). Consistent with this interpretation, we
observed tendencies for lower measures of local efficiency
(88% likelihood) and greater global efficiency (94% likeli-
hood) in men versus women in our sample. Sex differences in
the trajectory of age-related changes, with men showing a more
rapid shift toward less localized network organization, suggest
that lifestyle factors such as physical fitness levels may have a
relatively greater impact on the preservation of more differen-
tiated brain networks in older men. Although much research
has investigated age and sex as factors in network neuroscience
research, these have rarely been investigated within a single
study (70). The current findings argue for careful consideration
of sex as a factor in future research investigating the determi-
nants and implications of changes in the organization of func-
tional brain networks in older adulthood.

Notably, we did not see sex differences in reported physical
activity level in this study, providing greater evidence that the
differences seen between sexes are attributable to physiological
attributes associated with CRF (i.e., the sum of other compo-
nents of the CRF equation, including resting heart rate and
body mass index) as opposed to systematic differences in
physical activity reporting (which are known to occur between
the sexes; 48). It should also be noted that we cannot exclude
the possibility of a sex-specific reporting bias in our CRF
metric. The formula utilizes self-reported height and weight
information to calculate body mass index. Although the infor-
mation was gathered as part of the MRI safety protocol, in
which it would be in the participant’s interest to provide an
accurate report, a sex-dependent bias in reporting these mea-
sures is possible (15a).

Furthermore, although our total sample size is generally
consistent with similar studies, individual difference studies
typically require large cohorts. To help mitigate this limitation,
the neuroimaging methods employed in the study (e.g., the use
of ME-ICA) served to ensure stronger signal-to-noise ratio for
obtained neuroimaging data (i.e., a fourfold increase in signal-
to-noise ratio). Furthermore, our use of Bayesian statistics
served to minimize the influence of statistical outliers and

enabled us to report probabilities (and thereby quantify uncer-
tainties) in the data.

Although our findings identified sex differences in the asso-
ciation between fitness level and brain function in older adult-
hood, further research will be necessary to reconcile these
findings with previous cognitive neuroscience investigations
(47) as well as neurocognitive studies identifying stronger
associations between CRF and cognitive functioning in women
(4). Unfortunately, myriad methodological differences often
preclude direct comparisons among studies in the field. Per-
haps the most limiting of these involves discrepancies in the
measurement of physical fitness. Differences include the use of
self-report versus objective measures (69), as well as the
operationalization of physical activity and physical fitness (53,
83). Furthermore, investigating sex differences in this func-
tional domain is complicated by other sex-based differences
such as the impact of hormonal replacement therapy (16, 17,
23). Although these challenges are endemic to the field, our
findings that CRF is associated with brain function in a sex-
dependent manner underscores the importance of considering
sex as a factor when studying associations between exercise
and brain health in older adulthood. Rapid increases in the
popularity of exercise as an intervention to promote brain
health in later life presents an urgent need to overcome these
methodological challenges toward the goal of building a co-
herent body of research to inform evidence-based public health
initiatives.
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