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The behaviors of other people are often central to envisioning the
future. The ability to accurately predict the thoughts and actions
of others is essential for successful social interactions, with far-
reaching consequences. Despite its importance, little is known
about how the brain represents people in order to predict behavior.
In this functional magnetic resonance imaging study, participants
learned the unique personality of 4 protagonists and imagined how
each would behave in different scenarios. The protagonists’ person-
alities were composed of 2 traits: Agreeableness and Extraversion.
Which protagonist was being imagined was accurately inferred
based solely on activity patterns in the medial prefrontal cortex
using multivariate pattern classification, providing novel evidence
that brain activity can reveal whom someone is thinking about.
Lateral temporal and posterior cingulate cortex discriminated
between different degrees of agreeableness and extraversion,
respectively. Functional connectivity analysis confirmed that
regions associated with trait-processing and individual identities
were functionally coupled. Activity during the imagination task, and
revealed by functional connectivity, was consistent with the default
network. Our results suggest that distinct regions code for person-
ality traits, and that the brain combines these traits to represent
individuals. The brain then uses this “personality model” to predict
the behavior of others in novel situations.

Keywords: default mode network, fMRI, MVPA, personality traits,
simulation, social neuroscience

Introduction
A key aspect to successfully navigating the social world is the
ability to predict how people will behave in different situ-
ations. Individual differences in behavior can be predicted
from an individual’s personality traits, which encompass
broad cognitive and behavioral tendencies (Costa and McCrae
1992; Roberts et al. 2007; Fleeson and Gallagher 2009). To
make accurate predictions, a precise representation of an indi-
vidual’s personality traits must be created and this is known
as a personality model (Park 1986; Park et al. 1994). Studies
have shown that personality models can be quite accurate. In
fact, close friends are as accurate at predicting each other’s
daily behavior as they are at predicting their own behavior
(Vazire and Mehl 2008). Although there is a growing under-
standing of how an individual’s personality is tied to the struc-
ture and function of his or her own brain (DeYoung 2010),
little is known about how the personalities of other people
are represented in order to predict behavior.

We propose that, when predicting or imagining the behav-
ior of others based on their personality, the brain is likely to
rely on the same network of regions that support other forms
of mental simulation, such as remembering the past and plan-
ning for the future (Buckner and Carroll 2007; Hassabis and
Maguire 2007; Schacter et al. 2007, 2008, 2012). Because auto-
biographical memories and future plans are both character-
ized by social events (Larocque and Oatley 2006), social
information is a key component of event simulation (Spreng
et al. 2009). Both planned and remembered events often
involve the presence of other people, their thoughts, and
their behaviors. Autobiographical recollection (remembering
the past) involves reconstructing the spatial, temporal, and
often social elements from a past event in one’s life. This form
of mental simulation is likely linked to personality models, as
it is through previous experiences with others that one learns
of their personality traits. These traits are then combined to
build a model of that person’s overall personality. However,
predicting the future behavior of others differs from remem-
bering in that it involves mentally simulated events that have
yet to occur. This feature makes predicting behavior more
akin to simulating a future event. Nevertheless, future event
simulation engages many of the same core processes as re-
membering (Buckner and Carroll 2007; Hassabis and Maguire
2007; Schacter et al. 2007, 2008, 2012). This overlap includes
the shared need to construct a scene, generating and main-
taining a spatial context within which the future or past event
unfolds (Hassabis and Maguire 2007; Hassabis, Kumaran,
Maguire 2007; Hassabis, Kumaran, Vann, et al. 2007). We
would therefore expect these same core regions to be acti-
vated when predicting someone’s behavior, as scene construc-
tion is also required for mental simulating how someone
might behave. These core areas include the posterior cingu-
late cortex (pCC), the medial temporal lobes (MTLs), the pos-
terior inferior parietal lobule (IPL), and ventral medial
prefrontal cortex (mPFC) (Hassabis, Kumaran, Maguire 2007;
Hassabis, Kumaran, Vann, et al. 2007; Andrews-Hanna et al.
2010), all components of the default network.

Both the construction and application of personality models
are a key component of social processing, because these
models are essential for predicting and comprehending the
behavior of others. Identifying trait tendencies in others relies
on an ability to accurately read and interpret social cues, then
linking these to broader cognitive and behavioral tendencies.
The majority of research on the neuroscience of social proces-
sing has focused on the ability to infer the momentary mental
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states of others, often referred to as mentalizing (Premack and
Woodruff 1978; Carruthers and Smith 1996; Frith and Frith
2003). Currently, little is known about how the brain rep-
resents the broad cognitive and behavioral tendencies of other
people, beyond momentary mental inferences. Based on past
work, it appears that regions within the mPFC are involved in
making trait inferences about others (Harris et al. 2005; Mitch-
ell et al. 2006; Ma et al. 2011, 2012; Wagner et al. 2012). What
is not known is how the brain models personality and how
these personality models are employed to predict the behavior
of others. Unlike the transient nature of mental states, person-
ality traits are more enduring and generalize across time and
situations. Moreover, our models of a person’s personality are
far more flexible and have broader utility. For example, per-
sonality models allow us to make predictions about people
who are not currently present, or to predict a person’s reaction
to an entirely novel scenario. We can also construct personality
models based on second-hand information, allowing us to
make predictions about individuals we have only heard about.
It remains unknown how the brain constructs and applies per-
sonality models, and what role the default network may play
in these processes.

To address these questions, we employed functional mag-
netic resonance imaging (fMRI) to scan participants while
they imagined short events, each involving 1 of 4 possible
protagonists with distinct personality traits, in a variety of fic-
tional situations. Prior to scanning, participants learned the
distinct personalities of the protagonists using a “thin slice”
approach (Borkenau et al. 2004). Participants were presented
with profiles for 4 ostensibly real people, which included that
person’s name, a photograph of their face, and 12 statements
about their personality; order was counterbalanced across
participants. The 12 statements were created by modifying
the items from 2 “Big Five” personality trait questionnaires
(Costa and McCrae 1992; DeYoung et al. 2007). In this study,
we focused on 2 of the 5 main personality traits: Agreeable-
ness and Extraversion. Agreeableness reflects a tendency
toward altruism, cooperation, and a valuing of harmony in in-
terpersonal relationships as opposed to antisocial and exploi-
tative behaviors (Costa and McCrae 1992). Extraversion, on
the other hand, reflects a tendency toward the display of posi-
tive emotions and social affiliation as opposed to social with-
drawal and reserve (Costa and McCrae 1992). We selected
agreeableness and extraversion, because these traits are
rotated variants of the major axes of the interpersonal circum-
plex. These traits therefore capture a broad spectrum of social
behaviors and tendencies (e.g., McCrae and Costa 1989;
DeYoung et al. 2012). The 4 protagonists were either high or
low on these 2 dimensions, producing a 2 × 2 factorial design
(Fig. 1A). After training, participants were capable of recog-
nizing each protagonist and verbally describing that individ-
ual’s personality. Participants were then asked to vividly
imagine and to describe 12 novel locations for later recall in
the scanner (e.g., a bar, restaurant, bank; Hassabis, Kumaran,
Maguire 2007; Hassabis, Kumaran, Vann, et al. 2007).

In the subsequent scanning session, 12 text cues were pre-
sented, each describing a short event involving one of the prota-
gonists in a preimagined location (“Protagonist” conditions). For
example: “In a bar—someone spills their drink—Dave.” Partici-
pants were instructed to mentally play out these “vignettes” over
a 10-s period, concentrating on the actions, thoughts, and feel-
ings of the protagonist. Participants then rated the imagined

event for vividness and confidence in portraying the protagonist
accurately. Two additional control conditions followed a similar
format: (1) a “Self” condition where the participants imagined
themselves as the main character, and (2) an “Empty Scene”
condition, which involved simulating just the spatial scene,
devoid of people and events. A final baseline condition involved
counting the number of syllables in the text cue (the “Count”
condition) yielding 84 trials in all (7 conditions × 12 trials).

To assess the engagement of the default network across the
3 imagination tasks, we compared these conditions to the
baseline syllable Count condition. To examine how the brain
generates and applies personality models, we compared the
Self and Protagonist conditions with the Empty Scene control
condition. This comparison allowed us to isolate the interper-
sonal components of imagining an event from scene-
construction processes (Hassabis and Maguire 2007). More-
over, to determine whether the brain represents unique per-
sonality profiles with different brain areas, we employed
multivariate pattern analysis (MVPA) (Haynes and Rees 2006;
Norman et al. 2006). Doing so allowed us to determine
whether spatially localized brain activity was reliable enough
across individuals to infer who is being thought about, based
solely on the pattern of brain activation. An additional func-
tional connectivity analysis provided further clues as to how
personality information is integrated in order to produce a
model for behavioral predictions. Taken together, our results
reveal the role of the default network in the representation
and integration of social and personality information when
predicting the future behavior of other people.

Materials and Methods

Participants
Participants were 19 healthy right-handed young adults (10 females;
mean age = 21.4 ± 3.2 years) who gave written informed consent in
accordance with the Harvard Institutional Review Board.

Prescan Training

Protagonist Training
Participants learned the 4 protagonists’ personalities prior to scan-
ning, through a combination of training and testing for both compre-
hension and recall (Landauer and Bjork 1978; Roediger and Karpicke
2006). Participants were introduced to each of the protagonists on
paper. They were informed that the experimenters knew quite a lot
about the 4 individuals, derived from interviews with them, their
friends, and family. Participants were told that they would be given a
little bit of information about each individual, and that the exper-
imenters were interested in seeing how well the participant could
predict how the individuals would behave based on that information.
Protagonists were gender matched to the participant. Common
popular names for the protagonists were selected from the US social
security website (http://www.ssa.gov/cgi-bin/namesbystate.cgi) list of
the top 10 most popular names given to children born in Massachu-
setts in 1990. Men’s names were Mike, Chris, Dave, and Nick.
Women’s names were Ashley, Sarah, Nicole, and Jenny. No participant
shared the same name as the protagonist. Each name was paired with
12 personality statements, 6 related to agreeableness and 6 related to
extraversion, from items of the Big Five Aspect Scales (DeYoung
2010) and the Revised Neuroticism-Extraversion-Openness Personal-
ity Inventory (Costa and McCrae 1992). Personality statements for
agreeableness included statements worded positively (e.g., “Likes to
cooperate with others”) and negatively (e.g. “Can be cold and aloof”).
Likewise, statements for extraversion were both positive and negative
(e.g., “Is outgoing, sociable”; “Is sometimes shy, inhibited”). While
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looking at the 12 statements, photograph, and name, participants
rated 18 items about each protagonist, 1 protagonist at a time, as
either true or false (72 items in total; e.g. “Likes the idea of being
given a surprise party, TRUE or FALSE”). Participants were then given
the opportunity to study the 12 statements prior to a free recall test
where the 12 statements would be inaccessible. One at a time, partici-
pants were then instructed to “Describe your general thoughts and
impressions of this individual in 3–4 sentences.” Order of presen-
tation, as well as personality, name, and photograph pairings, was
randomized across participants.

Imagining Scenes Training
Participants were then asked to vividly imagine 12 common everyday
locations such as a bar, restaurant, or bank, and to describe them in
as much detail as possible (Hassabis, Kumaran, Maguire 2007; Hassa-
bis, Kumaran, Vann, et al. 2007). They were explicitly told not to give
an actual memory of a real place (or any part of one), but to instead
construct something entirely novel. They were informed that instruc-
tions to reimagine these locations would appear multiple times
during the scanning session, and that each time in response they
were required to always think of the exact same location as closely as
possible. These types of imagination tasks exemplify mental simu-
lation (Hassabis, Kumaran, Maguire 2007; Hassabis, Kumaran, Vann,
et al. 2007). Unlike autobiographical recollection, imagined events
can be experimentally manipulated and systematized. All participants
imagine the same scenarios and can do so multiple times, and the
content can be tightly controlled (Hassabis, Kumaran, Maguire 2007;
Hassabis, Kumaran, Vann, et al. 2007; Addis et al. 2009).

Immediately prior to scanning, participants were presented with a
photograph for each protagonist and required to state the person’s
name and 3 words describing that person’s personality. Following the
scan, participants were shown the photos and again asked to name
the person and provide 3 words to describe his or her personality;
this process ensured the stability of the personality representation
throughout the scanning interval. Participants also recounted the
content of their imagined event for 2 randomly selected scenes for
each of the 4 protagonists, as well as the self; this procedure allowed
us to confirm task compliance.

Task and Procedure
During the scanning session, participants were presented with text
cues describing a short event unfolding in each of the preimagined
locations, with 1 of the 4 people named as the main protagonist. For
example: “in the street—sees a homeless vet asking for change—
Sarah.” Participants were instructed to mentally play out 12 of these
vignettes, each lasting the duration of a 10-s period, concentrating on
the actions, thoughts, and feelings of the protagonist. Participants
then rated the imagined event for vividness and confidence in accu-
rately portraying the protagonist, both on a scale of 1–5. Each trial
lasted 25 s, consisting of: A text cue containing information regarding
the location, event, and protagonist (or “Self” or “Empty” cue) (5 s); a

mental simulation period (10 s); vividness and confidence ratings
(7.5 s); and a rest period (2.5 s). During the Count condition, the fol-
lowing information was displayed: A text cue (5 s); a counting period
allowing the participant to determine the number of syllables in the
verbal information (10 s); a question regarding whether the number
of syllables was even or odd and a confidence rating for their judg-
ment (7.5 s); and followed by a rest period (2.5 s). The trial order was
counterbalanced across participants, with no 2 adjacent trials invol-
ving either the same location or the same condition. Trials with vivid-
ness and confidence scores over 3 (on the 5-point scale) were
retained for subsequent fMRI analysis. The number of trials per con-
dition were M(self) = 10.1 ± 2.7; M(high extra–high agree) = 9.6 ± 2.8;
M(high extra–low agree) = 9.5 ± 2.8; M(low extra–high agree) = 9.4 ±
3.0; M(low extra–low agree) = 8.4 ± 3.1; and M(empty room) = 10.0 ±
2.8. Two additional conditions involving trait judgments were con-
ducted, but are not germane to the current aims and are thus not
reported.

Image Acquisition
Brain imaging data were acquired at the Harvard Center for Brain
Science with a 3-T Siemens TimTrio MRI scanner with a 12-channel
head coil. Anatomical scans were acquired using a T1-weighted multi-
echo volumetric MRI (time repetition [TR] = 2530 ms; time echos
[TE’s] = 1.64, 3.5, 5.36, 7.22 ms; 7° flip angle; 1-mm voxel). Two
30min 20 s blood oxygen level-dependent (BOLD) functional scans
were acquired with a T2*-weighted echo planar imaging (EPI) pulse
sequence (TR = 2500; TE = 30 ms; 85° flip angle; 39 axial slices;
3 × 3 × 3 mm voxels).

fMRI Analysis

Partial Least Squares Preprocessing and Analysis
For the 5 pairwise contrasts and functional connectivity analysis, fMRI
data were subjected to standard preprocessing steps and analyzed
with partial least squares (PLS; McIntosh 1999; Krishnan et al. 2011).
fMRI data were preprocessed using SPM2 (Wellcome Trust Center for
Neuroimaging, London, UK). The first 4 volumes in each run were
excluded from analyses to allow for T1-equilibration effects. Data
were corrected for slice-dependent time shifts and for head motion
within and across runs using a rigid-body correction. Images were
then spatially normalized to the standard space of the Montreal
Neurological Institute (MNI) atlas. The volumetric time series was
then spatially smoothed with a 6-mm full-width at half-maximum
(FWHM) Gaussian kernel resulting in 4-mm cubic voxels. All coordi-
nates are reported in MNI space.

PLS was utilized to examine BOLD signal changes at the group
level. The method is sensitive to covariance in voxel response associ-
ated with tasks, making it well suited to study distributed patterns of
activity. Additionally, PLS is impervious to scanner drift. This was es-
sential as the longer runs needed for optimal MVPA analyses that
exacerbated the potential for scanner drift. For the current analysis,
we used the nonrotated version of task spatiotemporal PLS (ST-PLS),

Figure 1. Study design. (A) The personalities of the 4 protagonists were varied high low on 2 trait dimensions, extraversion and agreeableness, to create a 2× 2 factorial
relationship between the 4 personalities. (B) Timeline showing the experimental design of a single trial. The text instruction cue is presented for 5 s containing the location and
vignette information. The name of the protagonist is then displayed (“Dave” in this example trial), and the participant imagines that event happening to that person in that
location for 10 s. Finally, participants give feedback on their imagined events via vividness and accuracy ratings followed by a rest period.
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enabling us to specify a priori nonorthogonal contrasts (as opposed
to the data-driven version of rotated ST—PLS that identifies orthog-
onal latent variables). Five pairwise sets of contrasts were specified.
Prior to analysis, activity at each time point, relative to trial onset, for
each voxel is averaged across trials of a given condition and normal-
ized to activity in the first TR of the trial. The data matrix is then ex-
pressed as voxel-by-voxel deviation from the grand mean across the
entire experiment. This matrix is analyzed with singular value
decomposition to derive the contrast effects in the data. Here, we
applied PLS analysis to event-related fMRI data, and the results
provide a set of brain regions wherein activity is reliably related to the
task conditions at 8 poststimulus time points. Each voxel is given a
singular value weight, known as a salience, which is proportional to
the covariance of activity with the task contrast at each time point for
the contrast. The significance of each contrast as a whole was deter-
mined by permutation testing, using 500 permutations. This analysis
was accomplished by randomly reassigning the order of the con-
ditions for each participant. PLS is recalculated for each permutation
sample, and the frequency with which the permuted singular value
exceeds the observed singular values is determined and expressed as
a probability. All task contrasts were significant at P = 0.002. In a
second, independent step, the reliability of the saliences for the brain
voxels across subjects was determined by bootstrap resampling, using
100 iterations, to estimate the standard errors for each voxel. Clusters
>100 mm3 comprising voxels with a ratio of the salience to the boot-
strap standard error values (i.e., the “bootstrap ratio”; BSR) >3
(P < 0.005) were reported. The local maximum for each cluster was
defined as the voxel with a BSR higher than any other voxel in a 2-cm
cube centered on that voxel. PLS identifies whole-brain patterns of
activity in a single analytic step and, thus, no correction for multiple
comparisons is required. Although most of the brain regions showed
reliable activations across multiple time points, we report the BSR for
the third TR (i.e., 7.5 s after the name appeared on the screen) as a
representative index of brain activity in time.

The functional connectivity analysis was performed using “seed”
PLS, a multivariate task-related functional connectivity analysis tech-
nique used to investigate the relationship between the activity of a
seed region and the activity in the rest of the brain (McIntosh 1999;
Krishnan et al. 2011). We used the BOLD signal in the mPFC (0, 50,
22) derived from the MVPA analysis, as seeds. We then assessed the
task-related functional connectivity with the rest of the brain during
the simulation of each of the 4 protagonists within the same analysis.
Individually defined seed activity from the peak activation and 26
neighboring voxels in the third TR was correlated with activity in all
brain voxels, across participants. This matrix was then analyzed as
above. Mean BSR values from the peak personality classifier analyses
in lateral temporal cortex (LTC) (−60, −34, −17), dorsal mPFC (−3,
41, 49), and pCC (−6, −49, 31), including the 26 neighboring voxels,
were used to assess the significance of connectivity with the seeds.

MVPA Preprocessing and Analysis
The first 4 volumes were excluded from analysis to allow for T1-
-equilibration effects. Using SPM8, the remaining volumes for individ-
ual subjects were realigned to the mean, resliced, and smoothed with
an 8-mm FWHM kernel, and the first 5 s of each trial were selected
for further analysis. Each trial was modeled with a separate regressor
as a boxcar function and convolved with the canonical hemodynamic
response function. A high-pass filter with a cutoff of 128 s was em-
ployed. Model estimation resulted in a “betamap” for each trial (Soon
et al. 2008), which were then z-scored (Pereira et al. 2009) and
inputted as the training data to the classifier.

Subsequent analyses were performed using multivariate pattern
analysis in python (PyMVPA) (Hanke et al. 2009). We used a whole-
brain “searchlight” MVPA approach (Kriegeskorte et al. 2006; Hassabis
et al. 2009), which involved stepping voxel by voxel through each sub-
ject’s brain, looking at localized patterns of activity in small spherical
arrays of voxels (radius = 3 voxels) to yield an “accuracy” map. Stan-
dard linear Support Vector Machines (“libsvm” backend; Chang and
Lin 2011) were trained (with the cost parameter C set to 1) using a
leave-one-out cross-validation procedure to produce accuracy esti-
mates across the brain (Pereira et al. 2009). The resulting accuracy

maps for each participant were then normalized to the MNI space and
smoothed with a 3-dimensional Gaussian kernel (cut at edges), to
compensate for errors in normalization. Since optimal levels of
smoothing can only be determined empirically (Hopfinger et al.
2000), several levels of smoothing may be used to analyze the data
(Worsley et al. 1996). In this case, we used 11-mm FWHM for the pro-
tagonist and agreeableness conditions, and a 16-mm FWHM for extra-
version. At a second-level analysis, voxel-wise t-values were computed
across these individual subject accuracy maps, yielding a final group
level “information heatmap”, which illustrates the brain regions that
carry sufficient information to discriminate between conditions.

We established the statistical significance of our findings using the
standard approach of permutation testing (Nichols and Holmes 2002).
For each classification problem, the whole procedure described above
was repeated 20 times but with random permutations of class labels
for the trials, and the maximum t-value in the whole brain computed.
Then in accordance with standard practice (Nichols and Holmes
2002), the 0.95-quantile of this maximum t-statistic sample obtained
from the permutation testing was selected as the significance
threshold. The corresponding t-value map (computed with correct
trial labels) was cut off below that value (t-value thresholds: 4.28,
2.82, 3.32 for agreeableness, extraversion, and protagonists classifi-
cations, respectively) yielding results significant at P < 0.05 corrected
for multiple comparisons.

Results

Behavioral Data
Overall, participants’ vividness and confidence ratings were
high (average ratings >4 of 5; for details, see Table 1), indicat-
ing task compliance. The assessment of vividness ratings
when imagining the 4 protagonists, the self, and the empty
room revealed a significant main effect (F5,14 = 3.87, P < 0.05).
However, no pairwise differences were observed when cor-
recting for multiple comparisons (Bonferroni correction,
α < 0.05). The trend was toward a significant difference in
vividness between the self condition and the 2 low agreeable-
ness protagonists. There was a statistically significant differ-
ence in confidence ratings for how the participants and 4
protagonists would act (F4,15 = 5.16, P < 0.01). Participants’
confidence in imagining their own behavior was higher than
for the 2 low agreeableness protagonists (Bonferroni correc-
tion, α < 0.05). Importantly, however, no significant differ-
ences were observed between the 4 protagonists. In
determining whether an even or odd number of syllables were
presented in the verbal material, participants performed at
better-than-chance levels (mean percent accuracy = 60 ± 16,
one sample t(18) = 2.55, P < 0.05).

Neuroimaging Data
To confirm the engagement of the default network across the
3 imagination tasks, we compared these conditions to the

Table 1
Behavioral results

Vividness Confidence

Mean SD Mean SD

High extraversion–high agreeableness 4.22 0.45 4.52 0.33
High extraversion–low agreeableness 4.07 0.39 4.28 0.46
Low extraversion–high agreeableness 4.17 0.53 4.36 0.46
Low extraversion–low agreeableness 4.00 0.50 4.19 0.60
All protagonists 4.11 0.37 4.34 0.39
Self 4.34 0.33 4.61 0.29
Empty scene 4.34 0.46 — —
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syllable counting task, in which participants only engaged the
surface features of verbally presented information. In 3 pair-
wise contrasts, imagining the protagonists, the self, and an
empty scene were compared with this baseline condition. The
imagination tasks were all associated with an increased BOLD
signal in default network regions, including the mPFC, pCC,
MTL, LTC, temporal pole, IPL, and the superior and inferior
frontal gyri (Fig. 2A–C, Supplementary Table 1). This pattern
of activity is consistent with the activity observed when
constructing a scene (Hassabis, Kumaran, Maguire 2007;
Hassabis, Kumaran, Vann, et al. 2007) and imagining possible
future events (Schacter et al. 2007, 2012).

Next, we parsed out the individual contributions of spatial
and social processing to default network activity by conduct-
ing 2 contrasts: (A) imagining the protagonists > imagining an
empty scene without people, and (B) imagining oneself >
imagining an empty scene. Relative to imagining an empty
scene, the contrasts for imagining the protagonists and the self
revealed regions in the ventral, dorsal, and anterior mPFC,
pCC, the temporal poles, and occipital cortex (Fig. 2D,E, Sup-
plementary Table 1). These brain regions are more engaged
by social processing during the simulation of a social inter-
action relative to those required to construct the scene. The
contrast comparing imagining the self with imagining the pro-
tagonists revealed greater activity in hippocampus, mPFC, and
other regions (see Supplementary Table 1 and Supplementary
Fig. 1 for full results). No brain regions demonstrated a greater
BOLD response for imagining the protagonists relative to
the self.

Two key questions were then addressed: (A) Where in the
brain is the personality information for protagonists rep-
resented? and (B) where is identity information for each of the
4 protagonists represented? To answer these questions, we uti-
lized MVPA to determine whether brain regions carried infor-
mation sufficient to discriminate between conditions. To
examine where personality information was represented, a
2-way classification was performed with trials involving prota-
gonists that shared a trait (e.g., high agreeableness) collapsed
into one condition. We found clusters in the dorsal mPFC and
left LTC (Fig. 3A) that distinguished between protagonists of

high and low agreeableness. Protagonists with high and low
extraversion were discriminated by differences in pCC
response (Fig. 3B). To locate where identity information for
the protagonists was represented, a 4-way classification was
performed to discriminate between the 4 protagonists. Clus-
ters in anterior and dorsal mPFC (superior to that observed for
agreeableness) reliably discriminated between the 4 protago-
nists (Fig. 3C). Different personality models are therefore
associated with unique and detectable patterns of brain
activity in the mPFC. In other words, based on brain activation
patterns alone, we were able to infer which of the 4 protago-
nists the participants were imagining.

Finally, we sought to evaluate the hypothesis that anterior
mPFC assembles and updates the models of other people’s
personality traits processed by the LTC, dorsal mPFC, and
pCC. To evaluate this hypothesis further, we conducted a
functional connectivity analysis to determine whether the
anterior mPFC was functionally connected with the LTC, the
dorsal mPFC, and the pCC during mental simulation of the 4
protagonists. In this analysis, we assessed the task-dependent
functional connectivity of the anterior mPFC in the 4 protago-
nist conditions. Across all 4 protagonists, activity in the
anterior mPFC was significantly correlated with a distributed
pattern of voxel response (Fig. 4). Functional connectivity
with the anterior mPFC was significant for the LTC (mean
BSR = 3.5, P < 0.001), dorsal mPFC (mean BSR = 4.1,
P < 0.001), and pCC (mean BSR = 3.2, P < 0.002). During ima-
gined social simulations, the brain regions that code for per-
sonality information are therefore functionally coupled with
the region that codes for individual identities. Further, mPFC
connectivity also extended to the entire default network, in-
cluding the IPL, retrosplenial cortex, and hippocampus (Fig. 4
and Supplementary Table 1).

Gender Control Analysis
Given gender differences in social behavior, we reanalyzed
our data to assess the effect of gender on our results. In the
group analysis using PLS, brain activity for both gender
groups covaried together, and there were no significant task
by gender interactions. For the MVPA, we used gender as a

Figure 2. Pairwise contrasts of the experimental conditions. (A) Self > Count; (B) Protagonists > Count; and (C) Empty Scene > Count all demonstrate default network
engagement across simulation conditions. (D) Self > Empty Scene and (E) Protagonists > Empty Scene show specific activity for social simulations. Images are displayed from
TR 3 (7.5 s) and thresholded at P< 0.005 (PLS identifies whole-brain patterns of activity in a single analytic step and, thus, no correction for multiple comparisons is required).
See Supplementary Table 1 for peak coordinates.
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Figure 3. MVPA results showing significant voxels at the group level after the application of whole-brain searchlight classification techniques, overlaid on an averaged structural
image. (A) Left LTC and dorsal mPFC discriminate between protagonists with high or low agreeableness. (B) pCC discriminates between protagonists with high or low extraversion.
(C) mPFC discriminates between the 4 protagonists. All voxels significant at P< 0.05 corrected for multiple comparisons. See Supplementary Table 1 for peak coordinates.

Figure 4. Functional connectivity analysis. (A) Whole-brain pattern of functional connectivity with the mPFC seed region identified by the MVPA analysis as discriminating
between the 4 protagonists. Seed region is circled in blue. Black circles designate that regions identified by the personality classification are functionally connected with the
mPFC region. Results displayed from TR 3 (7.5 s) and thresholded at P< 0.005 (PLS identifies whole-brain patterns of activity in a single analytic step and, thus, no correction
for multiple comparisons is required). (B) BOLD signal change, relative to the trial onset, for the 4 protagonist conditions (error bars are the within-subject SEM). (C) Correlation
between mPFC seed activity and composite measures of the distributed voxel response across the brain (confidence intervals were derived from bootstrap resampling). See
Supplementary Table 1 for peak coordinates.
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covariate of no interest in the second-level analysis and found
the same pattern of results. Next, we assessed whether there
where any reliable whole-brain differences in the regions that
discriminate between levels of agreeableness and extraver-
sion, as well as the 4 protagonists. No significant patterns
were observed. Although we recognize that there are many
reported gender differences in social cognition, we are unli-
kely to have the statistical power to observe them in our
current sample.

Discussion
Personality models describe broad cognitive and behavioral
tendencies, which are immensely useful for predicting how
people will behave and react. Thus, these models are essential
for successful navigation of the social world. In this study, we
examined how the brain constructs and applies personality
models. Default network activity was observed across 3
imagination tasks (consistent with this network’s involvement
in internally focused thoughts; Andrews-Hanna 2012), but sub-
regions of this network were more involved in social and inter-
personal information processing. Our results also identified
specific brain regions where personality models are coded, as
well as where individual trait information is represented in
the brain. Connectivity analyses examined how protagonist
identity and trait information interact, or how the brain associ-
ates specific personality traits with a given protagonist. These
results suggest that personality information is integrated in the
mPFC, producing a model for behavioral predictions.

A key question of interest was how personality models
for different people are represented in the brain. Different
patterns of activation in the anterior mPFC could reliably
distinguish between the different people whose behavior was
being imagined. We hypothesize that this region is respon-
sible for assembling and updating personality models. We
then examined how the brain represents 2 major traits: Agree-
ableness and extraversion. Agreeableness was associated with
unique patterns of BOLD response in the dorsal mPFC and
LTC, whereas extraversion was associated with the pCC.
These results provide a novel neuroscientific demonstration
that discriminable brain regions code for the specific person-
ality traits of other people. Given the novelty of our obser-
vations, we encourage replication to increase confidence in
these results. Notably, these brain regions are also reliably
engaged when people are inferring what a person is momen-
tarily thinking and feeling (Mar 2011) as well as when spon-
taneous and intentional trait inferences are being made (Ma
et al. 2011). During these moments, a subprocess may be
linking inferred mental states to broader personality traits.
This idea is consistent with past behavioral work, showing
that traits are rapidly and spontaneously inferred from beha-
viors (Uleman et al. 2008). As we get to know a person better,
individual personality traits are combined to form a more holis-
tic representation of the person’s character—a personality
model—which can be used to imagine and therefore predict
the behavior and thoughts of individuals in hypothetical situ-
ations. As we hypothesized, the brain regions that code for per-
sonality traits were functionally coupled with the mPFC, which
codes for individual identities during mental simulation.

Mentally simulated events are often composed of both
social and spatial elements. To determine whether different
components of the default network are associated with the

social and spatial aspects of mental simulation, we controlled
for scene construction to isolate the brain activity specific to
interpersonal imagining. After doing so, imagining social
elements was uniquely associated with the mPFC, pCC, and
the temporal poles. These regions are reliably observed during
studies of mental inference (Mar 2011) and are consistent with
the observed overlap between autobiographical memory and
mentalizing (Spreng et al. 2009; Rabin et al. 2010; Spreng and
Grady 2010). They might also facilitate the integration of
personal and interpersonal information for the strategic use of
social conceptual knowledge (Spreng and Mar 2012). Integrat-
ing social knowledge could also support the generation of
behavioral predictions based on personality models.

Event simulations consist of a rich spatial context within
which complex social interactions can take place. These simu-
lations reliably engage the default network, with recent work
exposing 2 core regions of the default network: mPFC and
pCC (Andrews-Hanna et al. 2010). Both of these regions are
densely interconnected with 2 distinct subsystems: (1) the
MTL subsystem, including the hippocampus, parahippocam-
pus, restrosplenial cortex, the posterior IPL, and ventral
mPFC, and (2) the dorsal mPFC subsystem, including dorsal
mPFC, LTC, the temporal parietal junction, and the temporal
pole (Andrews-Hanna et al. 2010). Generating the spatial
context for an event simulation appears to be supported by
the MTL subsystem of the default network (Andrews-Hanna
et al. 2010; i.e., the “scene construction” network, Hassabis
and Maguire 2007). Generating the social components of an
event simulation, including the application of personality
models, is supported by the core default structures and the
dorsal mPFC subsystem (Wagner et al. 2012). Further, individ-
ual regions of the dorsal mPFC subsystem differentially code
for personality traits and the unique identity of other people.
During the process of simulation, these discrete regions are
functionally coupled with each other and the MTL subsystem,
with these associations suggesting an integration of social and
personality features into a spatial context.

It has been suggested that mental simulations bestow an
adaptive advantage on humans by allowing them to prepare
for upcoming situations (Ingvar 1979; Taylor et al. 1998; Has-
sabis and Maguire 2007; Suddendorf and Corballis 2007;
Schacter 2012). Planning for social situations by imagining the
likely behavior of others may be especially critical for the
success of a highly social species, such as humans. Interest-
ingly, the anterior mPFC has been implicated in social cogni-
tion disorders, such as autism (von dem Hagen et al.
forthcoming), and our results point to a possible inability to
build accurate personality models of others for those with
such disorders. Future work in this direction should examine
how models of others are constructed, how personality
models are updated based on new information (Rapp and
Gerrig 2001), and how dysfunction might be treated.

Supplementary Material
Supplementary material can be found at: http://www.cercor.
oxfordjournals.org/.
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