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a b s t r a c t 

White matter hyperintensities (WMH) are among the most prominent structural changes observed in 

older adulthood. These changes coincide with functional changes to the intrinsic network organization of 

the aging brain. Yet little is known about how WMH are associated with changes to the whole-brain 

functional connectome in normal aging. We used a lesion prediction algorithm to quantify WMH as 

well as resting-state multiecho functional magnetic resonance imaging to characterize resting-state func- 

tional connectivity in a cross-sectional sample of healthy older adults (N = 105, 60–83 years of age). In a 

multivariate analysis, we found that higher lesion load was associated with a global pattern of network 

dedifferentiation, marked by lower within- and greater between- network connectivity. Network specific 

changes included greater visual network integration and greater posterior-anterior connectivity. The rela- 

tionship between WMH and resting-state functional connectivity was negatively associated with fluid IQ 

as well as Blood Oxygen Level Dependent signal dimensionality. Reduced functional network segregation 

is a widely observed pattern of age-related change. Our findings show that these functional changes are 

associated with the accumulation of WMH in older adulthood. 

© 2022 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

White matter lesions are among the most pervasive structural

brain changes occurring in later in life, with prevalence rates ap-

proaching 95% of adults over the age of 45 ( de Leeuw et al.,

2002 ; Habes et al., 2018 ; Vernooij et al., 2007 ). Lesions are typ-

ically indexed by the presence of white matter hyperintensities

(WMH) on fluid-attenuated inversion recovery (FLAIR) magnetic

resonance images ( Debette & Markus, 2010 ; Kloppenborg et al.,

2014 ; Prins & Scheltens, 2015 ). WMHs are associated with vascular

and amyloid pathologies in older adults ( Arfanakis, 2020 ; Walsh,

2020 ), and predict more rapid cognitive decline as well as ear-
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lier emergence of clinical syndromes, including Alzheimer’s disease

( Black et al., 2009 ; Sachdev et al., 2014 ; Vasquez & Zakzanis, 2015 ).

Investigating how these structural brain changes impact brain

function, and ultimately cognitive abilities, into older age is of in-

creasing urgency in a rapidly aging population ( World Health Or-

ganization, 2021 ). 

Alterations in large-scale functional brain networks are also a

hallmark of brain aging. Functional brain networks are observ-

able during wakeful rest, in the absence of explicit task demands,

and are characterized by low-frequency oscillations among spa-

tially distributed brain regions that cohere to form the intrinsic

functional network architecture of the brain ( Biswal et al., 2010 ;

Fox & Raichle, 2007 ; Yeo et al., 2011 ). These resting state brain

networks are formed by Hebbian-like mechanisms and shaped by

repeated patterns of co-activation (or inhibition) occurring across

timescales from moments to decades ( Stevens & Spreng, 2014 ). We

have argued that changes to the network architecture of the aging

https://doi.org/10.1016/j.neurobiolaging.2022.01.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neuaging.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neurobiolaging.2022.01.005&domain=pdf
mailto:nathan.spreng@gmail.com
https://doi.org/10.1016/j.neurobiolaging.2022.01.005
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brain parallels the shifting architecture of cognition in older adult-

hood ( Spreng & Turner, 2019b ), and there is growing evidence that

alterations in resting state functional connectivity (RSFC) patterns

are associated with age-related cognitive decline ( Chan et al., 2014 ;

Geerligs et al., 2014 ; Varangis et al., 2019 ; Stumme et al., 2020 ).

Given the increasing prevalence of WMH in later life, we reasoned

that these structural changes would be associated with alterations

to the whole-brain intrinsic functional connectome in older adults.

There is preliminary evidence for such an association. White

matter pathology was associated with altered RSFC among spatially

distributed brain regions in a small healthy adult lifespan sample

( De Marco et al., 2017 ). This study investigated compensatory neu-

roplastic changes, focusing only on positive associations between

WMH, RSFC as well as grey matter volumes within a circumscribed

set of brain regions and networks. Lesions within a priori defined

white matter tracts have also been associated with RSFC between

tract-specific brain regions, with differences observed in both di-

rect and indirect functional connectivity ( Langen et al., 2017 ). Sim-

ilarly, white matter lesions in stroke and other neurological con-

ditions have been associated with altered functional connections

between brain regions ( Fridriksson et al., 2013 ; Johnston et al.,

2008 ; Nomura et al., 2013 ; Schonberg et al., 2006 ; Seghier et al.,

2004 ; Song et al., 2014 , and see Dey et al., 2016 for a review).

Taken together, these findings suggest that age-related white mat-

ter changes may be associated with altered RSFC among large-

scale brain networks in older adulthood. However, the impact of

distributed WMH on the whole-brain functional connectome is

unknown. Understanding these brain-wide structure-function as-

sociations can provide novel insights into the downstream im-

pacts of WMH on brain function and ultimately how these func-

tional shifts manifest as behavioral changes in later life ( Spreng &

Turner, 2019b ). 

Here we examined how age-related white matter changes,

measured as WMH, were associated with the shifting architec-

ture of the whole-brain functional connectome in typically aging

older adults. We predicted that white matter lesion load in later

life would be associated with patterns of age-related functional

network dedifferentiation reported previously ( Chan et al., 2014 ;

Setton et al., 2022 ; see Damoiseaux, 2017 for a review). To test

this prediction, we first quantified white matter lesion burden us-

ing a lesion prediction algorithm. For the RSFC analyses, we imple-

mented 3 innovative approaches ( Setton et al., 2022 ). First, a multi-

echo functional magnetic resonance imaging (ME-fMRI) acquisition

sequence was used to separate neural Blood Oxygen Level Depen-

dent (BOLD) from non-neural (noise) components in the BOLD sig-

nal. Previous work has demonstrated that BOLD signal dimension-

ality decreases across the lifespan and has been related to large-

scale network changes ( Kundu et al., 2017 ; Setton et al., 2022 ). Fur-

ther, ME-fMRI improves signal to noise ratios, particularly in areas

of signal drop-out due to air-tissue interfaces or atrophic changes.

Next, we used individually defined cortical parcellations to iden-

tify discrete person-specific functional brain regions across the cor-

tical mantle, thereby reducing potential spatial distortions across

subjects ( Chong et al., 2017 ). Finally, we implemented multivariate,

partial least squares (PLS, Misic & McIntosh, 2013 ) analysis to in-

vestigate whole-cortical patterns of RSFC associated with WMH in

cognitively healthy older adults. 

2. Material and methods 

2.1. Participants 

One hundred and five healthy older adults were included in

this study (57% female; Mage = 68.35; age range: 60–83). See

Table 1 for sample demographics. Data were drawn from a collabo-
rative neuroimaging and neuropsychological data collection initia-

tive at York University (n = 28) and Cornell University (n = 77).

Participants were recruited from the community via flyers, word

of mouth, advertisements (TV, radio, and print), a local commu-

nity email list-serv, and research databases of participants who

were previously involved in studies at York or Cornell. Standard

inclusion and exclusion criteria were implemented to ensure all

participants were healthy without evidence of neurological, psy-

chiatric or other underlying medical conditions known to im-

pact brain or cognitive functioning. Specifically, participants were

screened to rule out individuals with acute or chronic psychi-

atric illness, those undergoing current or recent treatment with

psychotropic medication, and those having recently experienced

significant changes to health status. Participants were screened

for depressive symptoms using the Geriatric Depression Scale

( Yesavage et al., 1982 ). We administered the Mini-Mental State Ex-

amination (MMSE; Folstein et al., 1975 ) to rule out mild cogni-

tive impairment or sub-clinical dementia. Participants with MMSE

scores below 27/30 were excluded if NIH Toolbox fluid cognition

scores ( Gershon et al., 2013 ) also fell below an age-adjusted na-

tional percentile of 25%. All participants were right-handed with

normal or corrected-to-normal vision. Procedures were adminis-

tered in compliance with the Institutional Review Board at Cornell

University and the Research Ethics Board at York University. From

this sample, T2-FLAIR data of 125 older adults was available for

analysis. Nine of these participants did not have enough compo-

nents required for ME-ICA, and 2 participants had anatomical ab-

normalities. An additional 4 participants were excluded due to de-

pression (n = 2) or low cognition (n = 2). As such, 110 healthy

older adults met study criterion. One participant was excluded due

to artifacts that precluded white matter segmentation. Four addi-

tional participants were excluded as multivariate outliers, which

did not impact the results. Extended neuropsychological assess-

ment was incomplete in 2 participants. 

2.2. Behavioral assessment of neurocognitive functioning 

Performance on measures of fluid intelligence (fluid IQ) and

crystallized intelligence (crystallized IQ) was assessed to charac-

terize the cognitive abilities of each participant. Assessments of

fluid IQ and crystallized IQ were obtained using the Unadjusted

Fluid Cognition and Crystallized Cognition Composite Scores from

the National Institute of Health (NIH) Toolbox Cognition Battery

( http://www.nihtoolbox.org ). Higher scores are indicative of better

performance. 

2.3. Neuroimaging acquisition 

2.3.1. MRI acquisition 

Neuroimaging data were acquired from 2 sites with a 3T GE750

Discovery series MRI scanner and 32-channel head coil at the Cor-

nell Magnetic Resonance Imaging Facility or on a 3T Siemens Tim

Trio MRI scanner with a 32-channel head coil at the York Univer-

sity Neuroimaging Center in Toronto. 

2.3.2. T2-FLAIR/white matter hyperintensities 

T2-weighted FLAIR sequences were acquired at Cornell

(TR = 120 0 0 ms; TE = 95 ms; TI = 2712 ms; 160 ° flip angle;

42 slices of 1 × 1 × 3 mm; 2 m 36 s) and at York (TR = 120 0 0

ms; TE = 95 ms; TI = 2759.4 ms; 160 ° flip angle; 44 slices of

0.8 × 0.8 × 3 mm; 3 m 38 s). 

2.3.3. T1/anatomical 

T1 anatomical scans at Cornell were acquired using a T1-

weighted volumetric magnetization prepared rapid gradient echo

http://www.nihtoolbox.org
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Table 1 

Sample demographics 

n % 

Gender 

Female 60 57.10 

Male 45 42.90 

Race/Ethnicity 

White 94 89.52 

Asian 3 0.03 

Black 2 0.19 

Hispanic 2 0.19 

Other/Not Provided 4 0.04 

Variable n Minimum Maximum Mean SD 

Age (years) 105 60 83 68.35 6.17 

Education (years) 105 12 24 17.28 2.95 

Raw Lesion Volume (mm 

3 ) 105 23.00 28197.00 1670.66 3331.05 

Total Intracranial Volume (mm 

3 ) 105 1094150 2093480 1563410.70 188315.88 

Total Lesion Volume (mm 

3 ) 105 0.02 2.54 0.76 0.68 

Number of Lesions 105 1 25 9.71 4.66 

BOLD Dimensionality 105 10.5 32 18.11 4.48 

Crystallized-IQ 104 112.63 153.95 136.07 10.54 

Fluid-IQ 103 78.21 122.79 94.79 6.98 

Note. Total Lesion Volume, Raw Lesion Volume divided by Total Intracranial Volume; SD, standard deviation. Total lesion volume and num- 

ber of lesion values include winsorized observations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sequence (TR = 2530 ms; TE = 3.4 ms; 7 ° flip angle; 1mm

isotropic voxels, 176 slices, 5 m 25 s) with 2x acceleration with

sensitivity encoding. At York, anatomical scans were acquired us-

ing a T1-weighted volumetric magnetization prepared rapid gradi-

ent echo sequence (TR = 1900ms; TE = 2.52 ms; 9 ° flip angle; 1mm

isotropic voxels, 192 slices, 4 m 26 s) with 2x acceleration and

generalized auto calibrating partially parallel acquisition (GRAPPA)

encoding at an iPAT acceleration factor of 2. While these acqui-

sition parameters were aligned as closely as possible across sites,

we cannot rule out that estimations in lesion volume may vary

slightly due to marginal differences in scanner sequences. How-

ever, all analyses reported below include site as a covariate. 

2.3.4. Resting-state functional MRI 

Two 10 minutes 06 seconds resting-state runs were acquired

using a multi-echo (ME) EPI sequence at Cornell University

(TR = 30 0 0 ms; TE 1 = 13.7ms, TE 2 = 30 ms, TE 3 = 47 ms; 83 °
flip angle; matrix size = 72 × 72; field of view (FOV) = 210 mm;

46 axial slices; 3 mm isotropic voxels; 204 volumes, 2.5x accelera-

tion with sensitivity encoding) and York University(TR = 30 0 0 ms;

TE1 = 13.7 ms, TE2 = 30 ms, TE3 = 47 ms; 83 ° flip angle; matrix

size = 64 × 64; FOV = 216 mm; 43 axial slices; 3.4 × 3.4 × 3 mm

voxels; 200 volumes, 3x acceleration and GRAPPA encoding). Par-

ticipants were instructed to lay still with their eyes open, breathing

and blinking normally in the darkened scanner bay. 

2.4. Image processing 

2.4.1. T2-FLAIR/white matter lesion load 

T2-FLAIR structural MRI sequences were used to evaluate WMH

load volume and quantity. WMH were segmented by the le-

sion prediction algorithm (LPA; Schmidt, 2013 , Chapter 6.1) as

implemented in the Lesion Segmentation Toolbox (LST) version

2.0.15 ( www.statistical-modelling.de/lst.html ) for Statistical Para-

metric Mapping. As covariates for this model, a lesion belief map

showing voxels that appear hyperintense on FLAIR images and that

are likely to be part of the white matter was used ( Schmidt et al.,

2012 ). In addition, a spatial covariate that takes into account voxel

specific changes in lesion probability was implemented. Parame-

ters of this model fit are used to segment lesions in new images by
providing an estimate for the lesion probability for each voxel. For

the calculation of the lesion probability maps, T2-weighted FLAIR

images were used. The resulting output was a probability lesion

map in FLAIR space for each participant. Given that FLAIR images

can be affected by artifacts such as cerebrospinal fluid pulsation,

subject-specific anatomical masks were created using FSL tools

( https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA ) to exclude voxels that

were not part of the white matter. T1 images were processed with

FreeSurfer. The T1 high-resolution biased corrected images and di-

lated cerebrospinal fluid masks of each participant were used to

create the anatomical masks. To ensure appropriate tissue classi-

fication, we masked each subject’s lesion probability mask with a

subject-specific exclusion mask, including WM and excluding GM,

subcortical GM and cerebellum (See Supplementary Figure 1 for

a sample mask and procedure for lesion number and volume ex-

traction). The masks were then warped to each individual’s native

FLAIR space. Regions falling outside the mask were excluded from

the probability lesion maps. Finally, the masked lesion probability

maps were used to calculate the total lesion volumes (in units of

cubic millimeters) and the total number of lesions for each partic-

ipant (See Supplementary Table 1 for lobar-specific values). Each

participant’s raw total lesion volume was then divided by their es-

timated total intracranial volume (eTIV) in mm 

3 to correct for head

size. Final total lesion volume (TLV) and number of lesions data

were converted to within-sample z-scores for subsequent analysis.

The combination of total lesion volume and number of lesions is

collectively referred to as “white matter lesion load”. 

The inferential procedure of PLS is based on resampling statis-

tics (permutation testing), rather than GLM parametric methods;

it does not make any assumptions about data normality. Further,

PLS has been shown to be robust to skewed response distribu-

tions (see Cassel et al. 1999 ). Given this, we chose to report non-

log transformed TLV and number of lesion values in the main text

as these are veridical representations of the data. Further, there

is evidence that log-transformations can possibly exacerbate skew-

ness ( Feng et al., 2014 ), and large sample sizes as we report here

are considered robust to violations of the normality assumption

( Ghasemi & Sahesiasl, 2012 ). However, we report all analyses with

log-transformed total lesion volumes in Supplementary Materials

(Section S3). 

http://www.statistical-modelling.de/lst.html
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/BIANCA
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2.4.2. Functional MRI processing 

Functional images were submitted to multi-echo independent

components analysis (ME-ICA; version 3.2 beta; https://github.

com/ME- ICA/me- ica ; Kundu et al., 2012 , 2013 ). ME-ICA relies on

the TE-dependence model of BOLD signal to better approximate

T2 ∗ in every voxel and differentiate BOLD signal from non-BOLD

sources of noise. Prior to TE-dependent denoising, time series

data were minimally pre-processed: the first 4 volumes were dis-

carded, matrices were computed for de-obliquing, motion correc-

tion, and anatomical-functional coregistration, and each TE was

brought into spatial alignment. Anatomical-functional coregistra-

tion was driven by the T2 ∗ map which delineates grey matter and

cerebrospinal fluid compartments more precisely than raw EPI im-

ages ( Kundu et al., 2017 ; Speck et al., 2001 ). This is a critical con-

sideration in aging research given that structural changes, such

as enlarged ventricles and greater subarachnoid space, blur the

boundary between them. TEs were then optimally combined and

de-noised. 

Post-processing quality assessment was performed on the de-

noised time series in native space to identify and exclude partic-

ipants with unsuccessful coregistration, residual noise (in-scanner

motion, or absolute displacement, in any direction > 3 mm cou-

pled with de-noised time series showing DVARS > 1; Power et al.,

2012 ), poor temporal signal to noise ratio (tSNR; < 50), or fewer

than 10 retained BOLD-like components. The de-noised ICA co-

efficient sets in native space, optimized for functional connectiv-

ity analyses ( Kundu et al., 2013 ), were used in subsequent steps.

We refer to these as multi-echo functional connectivity (MEFC)

data. Computing functional connectivity with approximately inde-

pendent coefficients rendered global signal regression unnecessary

( Spreng et al., 2019 ). Critically, ME-ICA effectively removes distant

dependent RSFC motion confounds from fMRI data ( Power et al.,

2018 ). 

2.4.3. RSFC parcellation 

Whole brain RSFC matrices were initialized with the 200-parcel

Schaefer atlas ( Schaefer et al., 2018 ), corresponding to 7 RSFC-

defined networks ( Yeo et al., 2011 ). Participant-specific functional

connectomes were then computed with the Group Prior Individ-

ual Parcellation algorithm (GPIP; Chong et al., 2017 ; Mwilambwe-

shilobo et al., 2019 ). To do so, MEFC data were mapped to

a common cortical surface for each participant using FreeSurfer

( Fischl, 2012 ). To maximize alignment between intensity gradients

of structural and functional data ( Greve & Fischl, 2009 ), MEFC data

were first linearly registered to the T1-weighted image by run. The

inverse of this registration was used to project the T1-weighted

image to native space and resample the MEFC data onto a cortical

surface (fsaverage5) with trilinear volume-to-surface interpolation.

Once on the surface, runs were concatenated and MEFC data at

each vertex were normalized to zero mean and unit variance. We

generated subject-specific functional parcellations to examine in-

dividual differences in functional brain network organization with

a group sparsity prior approach (GPIP; Chong et al., 2017 ). Rel-

ative to group-based parcellations, GPIP has been shown to im-

prove homogeneity of resting activity within parcels and delin-

eation between regions of functional specialization ( Chong et al.,

2017 ). This approach therefore enables a more accurate estimation

of subject-specific individual functional areas ( Chong et al., 2017 ),

and may be better suited to detect RSFC associations with behav-

ior (e.g. Kong et al., 2021 ; Mwilambwe-Tshilobo et al., 2019 ). We

extracted the resulting MEFC data from each parcel and computed

the product-moment correlation between each pair, resulting in a

20 0 × 20 0 functional connectivity matrix ( Ge et al., 2017 ). The

canonical Fisher’s r-to-z transformation was then applied to ac-
count for variation in MEFC data degrees of freedom, or the num-

ber of de-noised ICA coefficients, across individuals ( Kundu et al.,

2013 ). 

2.4.3.1. BOLD dimensionality . A unique advantage of ME-fMRI

and the MEICA processing framework is that BOLD- and non-

BOLD-like signals can be separated into independent components.

BOLD dimensionality may then be examined ( Kundu et al., 2018 ;

Setton et al., 2022 ), which is the number of BOLD components

identified in the ME-fMRI timeseries. In the current study, BOLD

dimensionality was computed for each participant by averaging the

number of BOLD components retained from each run. 

2.5. Data analysis 

All product-moment and partial correlations were conducted

with SPSS version 27 with a 95% Confidence Interval (CI) based

on 500 bootstrap samples and statistical significance set at p <

0.05. All partial correlation analyses controlled for the effects of

site for data collection, participant age, gender, and years of edu-

cation. Given prior literature characterizing associations between

white matter lesion load, age, and cognition ( Cook et al., 2004 ;

Gunning-Dixon & Raz, 20 0 0 ; Kramer et al., 20 07 , Raz et al., 2005 ;

Vernooij et al., 2007 ), a priori correlations between these variables

were 1-tailed. All subsequent statistical tests were 2-tailed. 

2.5.1. Partial least squares 

Behavioural Partial Least Squares (bPLS) was performed to

identify RSFC patterns associated with individual differences in

white matter lesion load (TLV and number of lesions; McIntosh

& Lobaugh, 2004 ; McIntosh & Misic, 2013 ). PLS is a data-driven,

multivariate statistical technique that allows for concurrent repli-

cation of previous RSFC patterns and explorative investigation of

relationships outside of previously examined networks. For this

reason, it was considered the preferred method of analysis for this

study. In this study white matter lesion load values were treated as

behavioral variables. 500 Permutation tests were used to evaluate

the significance of the pattern of RSFC captured by a given latent

variable (LV), while 500 bootstrap samples were used to determine

its reliability. Large ‘bootstrap ratios’ (BSRs) correspond to brain

functional connections and behaviors that have large weights and

narrow confidence intervals. BSRs are equivalent to z-scores if the

sampling distribution is approximately unit normal ( Efron & Tib-

shirani, 1986 ). Brain network connections were considered reliable

if the absolute value of the BSR exceeded ±1.98 (approximately

p < 0.05) and were visualized using BrainNet Viewer ( Xia et al.,

2013 ) with a BSR threshold of ±4 ( p < 0.0 0 01) for visualization. 

We next determined the network-level functional connectiv-

ity associations of the visual network (VIS), somatomotor net-

work (SOM), dorsal attention network (DAN), ventral attention

network (VAN), limbic network (LIM), frontoparietal control net-

work (FPN), and default network (DN), with white matter lesion

load. Within- and between- network-level contributions for the de-

rived connectivity pattern were examined following Mwilambwe-

shilobo et al., (2019) . Positive and negatively weighted adjacency

matrices were binarized with BSR values of ±1.98. The network-

level functional connectivity contributions were quantified by av-

eraging the weights of all connections in a given network, generat-

ing a 7 × 7 matrix, and performing 500 permutation tests against

a null sampling distribution for network assignment and connec-

tivity patterns ( Shafiei et al., 2019 ). 

https://github.com/ME-ICA/me-ica
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Fig. 1. Associations with white matter lesion load. (A) Total lesion volume is associated with number of lesions. Increasing age is associated with (B) Total lesion volume, 

and, (C) Number of lesions. Fluid-IQ is negatively associated with (D) Total lesion volume, and, (E) Number of lesions. Total lesion volume is corrected for intracranial volume 

and converted to standard units (z-score). Red shading represents 95% CI. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 

version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. Results 

6.1. Data analysis procedure 

In a sample of healthy older adults, we characterized white

matter lesion load, indexed by total lesion volume and number of

lesions. We then examined the validity of these indices to confirm

that estimates of white matter lesion load in our sample demon-

strated patterns previously established in the literature ( Cook et al.,

2004 ; Gunning-Dixon & Raz, 2000 ; Kramer et al., 2007 , Raz et al.,

20 05 ; Vernooij et al., 20 07 ). This was accomplished by examining

white matter lesion load associations with age and cognition. We

then used a multivariate data-driven analytical model to investi-

gate RSFC patterns associated with individual variability in white

matter lesion load . Next, we extracted the metric of BOLD dimen-

sionality (i.e., the number of BOLD components emerging from ME-

ICA), which has been used a marker of functional network differ-

entiation in younger ( Kundu et al., 2018 ) and older ( Setton et al.,

2022 ) adults. We then examined how the relationship between

white matter lesion load and RSFC was associated with cognition

and BOLD dimensionality in our typically aging sample. 

6.2. White matter lesion load 

Consistent with expectations, total lesion volume and number

of lesions were positively correlated ( r (103) = .730, p < 0.001, CI:

0.60, 0.83; Fig. 1 A). White matter lesion load was then examined

for its associations with age and cognitive performance. Both to-

tal lesion volume and number of lesions were positively correlated

with age ( r (103) = .562, p < 0.001, CI: 0.42, 0.68; r (103) = 0.398, p

< 0.001, CI: 0.23, 0.55, respectively; Fig. 1 B–C). Both total lesion

volume and number of lesions were negatively associated with

fluid IQ ( r (101) = -.220, p = 0.013, CI: -0.36, -0.05); r (101) = -

.227, p = 0.011, CI: -0.37, -0.07, respectively; Fig. 1 D–E). The asso-

ciations between white matter lesion load and fluid IQ held when

controlling for site, gender, age and education (total lesion volume:

pr (97) = -0.179, p = 0.038, CI: -0.34, 0.03); number of lesions:

pr (97) = -.017, p = 0.046, CI:-0.32, -0.02). There were no signif-

icant relationships found between indices of white matter lesion

load and crystallized IQ. 
6.3. Cortical RSFC and white matter lesion load 

We examined the relationship between white matter lesion

load and cortical inter-regional RSFC. PLS identified a significant

pattern of connectivity (permuted p = 0.034, Fig. 2 A) that was

reliably associated with both total lesion volume and number of

lesions (total lesion volume: r = 0.67, CI: 0.67, 0.84; number of

lesions: r = 0.67, CI: 0.65, 0.83; Fig. 2 B). The associations re-

mained significant when controlling for site, age, gender, and years

of education for total lesion volume (pr(99) = .54; p < 0.001, CI:

0.41, 0.65) and number of lesions (pr(99) = .43; p < 0.001, CI:

0.26, 0.36). White matter lesion load is associated with both lower

and higher levels of inter-regional RSFC across the connectome

( Fig. 2 A). 

When examining network level effects of white matter lesion

load, we found systematic differences in within- and between- net-

work connectivity patterns ( Fig. 2 C). White matter lesion load was

predominantly associated with lower within-network connectivity

in the SOM, DAN, VAN, LIM, and DN. Lesion load was also associ-

ated with lower connectivity between the SOM and VAN; LIM and

SOM, and LIM and DN. 

In addition to lower levels of RSFC associated with white mat-

ter lesion load, increases in RSFC were also observed. White mat-

ter lesion load was associated with greater visual network connec-

tivity, both within this system and between the visual network to

the DN, FPN, LIM, and VAN. Higher lesion load was also associated

with greater between-network connectivity for the SOM to FPN,

and VAN to DN. 

The most robust and reliable inter-regional connections (i.e.,

those with BSR exceeding ±4.0; approximately p < 0.0 0 01) associ-

ated with white matter lesion load are depicted in Fig. 2 D. Greater

white matter lesion load was associated with lower RSFC between

contralateral regions, which form many within-network connec-

tions ( Fig. 2 D - blue). Higher white matter lesion load was associ-

ated with greater intra- and inter- hemispheric anterior-posterior

connectivity, primarily comprising connectivity between anterior

regions and the visual system ( Fig. 2 D - red). 

The brain connectivity score is a composite score representing

the extent to which each participant expresses the group RSFC ma-

trix association with white matter lesion load. Controlling for age,
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Fig. 2. Relationship between white matter lesion load and RSFC (A) The correlation matrix of reliable pairwise connections associated with number of lesions and total lesion 

volume (BSR magnitude ±1.98, p < 0.05, connections). (B) Bootstrapped correlations and scatterplots depict the relationship between connectivity scores and white matter 

lesion load. Red shading represents 95% CI. (C) Network level effects on the relationship between within- and between- network connectivity with white matter lesion load 

(D) Highest magnitude and reliable inter-regional connections associated with white matter lesion load (Bootstrap ratio (BSR) magnitude ±4, p < 0.0 0 01, connections). Blue 

lines depicts lower connectivity with white matter lesion load. Red lines depict greater connectivity with white matter lesion load. Lateral views are within hemisphere. 

Dorsal view depicts between hemisphere. Nodes that are not connected by edges on lateral surfaces indicate cross-hemisphere connections. Abbreviations: VIS, visual; SOM, 

somatomotor; DAN, dorsal attention; VAN, ventral attention, LIM, limbic, FPN, frontoparietal network; DN, default network. Total lesion volume is adjusted for intracranial 

volume. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

gender, and years of education and site, this connectivity score ap-

proached significance for its association with fluid IQ ( pr (97) = -

.189, p = 0.061, CI: -0.39 to 0.05). For associations with individual

tasks comprising the NIH fluid cognition score, see Supplementary

Tables 2 and 3. No association with crystallized IQ was observed. 

6.4. BOLD dimensionality 

Finally, we conducted an exploratory analysis of BOLD di-

mensionality’s association with aging, white matter lesion load,

and the brain connectivity scores identified above (which con-

vey the relationship between RSFC and white matter lesion load

across subjects). BOLD dimensionality was lower with advancing

age ( r (103) = -0.243, p = 0.012, CI: -0.44, -0.06; Fig. 3 A). BOLD

dimensionality was negatively associated with total lesion vol-

ume ( r (103) = -0.300, p = 0.002, CI: -0.43, -0.14; Fig. 3 B), and

number of lesions ( r (103) = -0.246, p = 0.011, CI: -0.41, -0.08;

Fig. 3 C). However, when controlling for site, age, gender, and years
of education, BOLD dimensionality associations with indices of

white matter load were no longer significant (total lesion volume:

pr (99) = -0.138, p = 0.169, CI: -0.29, -0.05; number of lesions:

pr (99) = -0.111, p = 0.268, CI: -0.29, -0.09). Critically, BOLD di-

mensionality showed a negative linear association with the brain

connectivity scores, ( r (103) = -0.603, p < 0.001, CI: -0.72, -0.47;

Fig. 3 D), and this association remained significant when control-

ling for site, age, gender, and years of education ( pr (99) = -.464, p

< 0.001, CI: -0.66, -0.20). These results show that the association

between RSFC patterns and individual variability in white matter

lesion load is related to BOLD dimensionality. 

7. Discussion 

We investigated whether white matter lesion load in typically-

aging older adults was associated with the functional network or-

ganization of the brain. Consistent with predictions, lesion load

was positively associated with age and negatively associated with
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Fig. 3. BOLD dimensionality associations. (A) BOLD dimensionality declines with 

advancing age. BOLD dimensionality is negatively associated with (B) Total lesion 

volume, and (C) Number of lesions. (D) BOLD dimensionality shows a negative lin- 

ear association with the relationship between RSFC and white matter lesion load. 

Red shading represents 95% CI. (For interpretation of the references to color in this 

figure legend, the reader is referred to the Web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fluid cognition. RSFC across the cortical connectome was associ-

ated with individual variability in white matter lesion load. Greater

lesion load was associated with lower within-network connectiv-

ity and a pattern of predominantly higher connectivity between-

networks, suggesting that damage to white matter pathways is

associated with greater network dedifferentiation in older adult-
hood. Further, the expression of this WMH-RSFC pattern was as-

sociated with lower fluid IQ. Finally, in an exploratory analysis we

observed that lower BOLD dimensionality (i.e., the number of non-

noise BOLD components within resting-state ME-fMRI data), was

associated with greater expression of this WMH-RSFC dedifferen-

tiated network pattern. Together, these findings demonstrate that

WMH are associated with significant alterations in the functional

network architecture of the aging brain. 

7.1. White matter lesion load and neurocognitive functioning 

Our sample was a typically aging cohort of older adults and ex-

pressed no signs of an emergent clinical syndrome or cognitive im-

pairment. Nonetheless, all older adults in this study displayed evi-

dence of at least one WHM on FLAIR imaging. These findings pro-

vide strong support for concerns that cerebrovascular changes in

later life, associated with WMH, may constitute an emerging public

health priority. WMHs may be clinically ‘silent’, yet they are among

the strongest predictors of major stroke, and can lead to more

rapid cognitive decline when co-morbid with Alzheimer’s disease

pathology ( Black et al., 2009 ; Sachdev et al., 2014 ; Vasquez & Za-

kzanis, 2015 and see Dey et al., for a review). Indeed, the presence

of cerebral small vessel disease, including atherosclerosis, deep

white matter lesions, or subcortical lacunar infarcts, is strongly

associated with Alzheimer’s disease onset ( Yarchoan et al., 2012 )

and a nearly 2-fold increase in dementia risk ( Snowdon et al.,

1997 ). Consistent with these findings, chronological age is the pri-

mary predictor of the prevalence and degree of WMH ( De Leeuw

et al., 2001 ; Kennedy & Raz, 2015 ). Cross-sectional and longitudi-

nal studies have revealed substantial white matter changes in nor-

mal aging, with volume loss estimated as high as 3 cm 

3 per year

( Resnick et al., 2003 ; Spreng & Turner, 2019b for a review). De-

clines in white matter volume and increases in WMH may also fol-

low a curvilinear trajectory with more rapid changes occurring in

the oldest old ( Yang et al., 2016 ). 

Further, these changes have direct impact on behavior as WMH

has been linked to age-related cognitive decline, with higher le-

sion loads associated with poorer performance on complex cogni-

tive tasks ( Benson et al., 2018 ; Prins & Scheltens, 2015 ; Wirth et al.,

2013 ; Quandt et al., 2020 ). Again, our findings are consistent with

these reports, with white matter lesion load showing a robust,

negative association with fluid cognition. The impact of white mat-

ter lesions on complex cognitive abilities is perhaps unsurprising.

The prefrontal cortex, via its connections to other brain regions,

is implicated in these higher order cognitive abilities and is se-

lectively vulnerable to white matter pathology in older adulthood

( Raz et al., 2005 ; Spreng & Turner, 2019b for review). The preva-

lence of white mater lesions across our healthy aging sample was

universal, increased with age, and predicted lower fluid IQ. A criti-

cal question is whether and how these structural changes intersect

with changes to functional brain networks, and how these asso-

ciations may potentiate cognitive decline or promote resilience in

later life. 

7.2. White matter lesion load is associated with whole-brain RSFC 

A reliable pattern emerged associating cortical RSFC with the

number and total volume of white matter lesions. Broadly, this

pattern was consistent with our predictions of a dedifferenti-

ated network architecture, comprising lower within- and higher

between- network RSFC. We observed a similar connectivity pat-

tern in this cohort of older adults compared to younger adults in

a cross-sectional study of the functional architecture of the brain

( Setton et al., 2022 ). Here we provide novel evidence that this

pattern of network dedifferentiation is positively associated with
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white matter lesion load. While our cross-sectional study design

does not allow us to evaluate within-subject changes, based on

these findings we predict that the occurrence of white matter le-

sions may accelerate and steepen the trajectory of RSFC network

dedifferentiation over the course of late-life development. 

Further, clinical studies investigating white matter pathology

of various etiologies (e.g., Multiple Sclerosis, Mild Cognitive Im-

pairment, and Alzheimer’s disease) have demonstrated associa-

tions with global alterations in neuronal activity ( Sbardella et al.,

2015 ; Soares et al., 2021 ; Zhou et al., 2015 ). Task-based fMRI stud-

ies of healthy older adults have also demonstrated distributed

changes in functional activation patterns with increasing lesion

load ( Griebe et al., 2014 ) and this has been associated with tract-

specific changes involving both direct and indirect functional con-

nections ( Langen et al., 2017 ). Here we demonstrate that white

matter lesions result in altered functional connectivity extending

well beyond local circuits, with impacts measurable across the

whole functional connectome. 

Finally, we observed that this pattern of WMH-RSFC was neg-

atively associated with lower fluid IQ. No associations were ob-

served with crystalized IQ. While preliminary, these cognitive find-

ings suggest that the global pattern of WMH-RSFC associations ob-

served here are specifically related to lower capacity for fast and

flexible thinking, in the context of preserved crystalized cognition.

These results provide additional support for our model linking the

shifting architectures of brain and cognitive functioning in older

adulthood ( Spreng & Turner, 2019b ). 

7.3. White matter lesion load is associated with network-specific 

changes in RSFC 

Our results suggest that the accumulation of white matter dam-

age in late life development is associated with large-scale reorga-

nization of intrinsic functional brain networks. Specifically, greater

white matter pathology was associated with lower connectivity

within nearly all the canonical resting-state networks investigated

here, with the notable exception of the visual and frontoparietal

control networks. In contrast, higher white matter lesion load was

associated with increased between-network connectivity, particu-

larly involving connections of the primary visual and somatosen-

sory cortices to higher order association networks including fron-

toparietal control, default and ventral attention (“salience”) net-

works. This extends our recent work demonstrating similar pat-

terns of altered functional connectivity from younger to older

adulthood ( Setton et al., 2022 ), suggesting that the presence of

white matter pathology may hasten these changes. 

Recent reports have suggested that functional connectivity in

response to the accumulation of WMH may reflect compensatory

reorganization within specific neural circuits ( Benson et al., 2018 ;

De Marco et al., 2017 ). However, the current findings suggest that

functional brain differences associated with global WMH values

show reliable widespread network effects between spatially dis-

tributed brain regions spanning almost the entirety of the cor-

tical mantle. This generalized pattern is not consistent with a

more circumscribed, circuit-level, compensatory functional reorga-

nization account. A shift from within- to greater between- net-

work connectivity, or reduced network segregation, underpinned

by the accumulation of white matter pathology with age, may

reduce fluid cognitive resources. While we do not provide direct

evidence here, reduced within- and increased between- network

connectivity results in a dedifferentiated network architecture that

has been associated with age-related cognitive decline in previ-

ous reports ( Betzel et al., 2014 ; Chan et al., 2014 ; Geerligs et al.,

2015 ; Malagurski et al., 2020 ; Strumme et al., 2020 ). We posit

that structural disruptions imposed by WMH promote the collapse
of a more efficient and modular network architecture present in

younger adulthood ( Bullmore et al., 2009 ), leading to network ded-

ifferentiation and neurocognitive decline in later life. 

While network dedifferentiation was the most prominent and

generalized pattern of functional reorganization observed here,

several other patterns of altered RSFC also emerged. Functional

connectivity declined within most networks; however, the visual

network demonstrated the opposite trend. White matter lesion

load was associated with higher connectivity among brain regions

within this network. We also note that the average number of le-

sions in occipital regions is relatively high given its size, compared

to other lobes (Supplementary Table 1). While interpretations of

this unexpected positive association between WMH and functional

connectivity within the visual network would be purely specula-

tive, we suggest that exploring these structural-functional associa-

tions within visual cortices would be an interesting area for future

research. 

Connectivity between the visual network and other networks

was also associated with higher lesion load. We have reported

greater integration of unimodal visual cortices with transmodal

association networks in this cohort ( Setton et al., 2022 ). Visual

network integration into the larger connectome has now been

replicated across several aging studies ( Bethlehem et al., 2020 ;

Geerligs et al., 2015 ; Stumme et al., 2020 ). Greater integration of

visual brain regions with transmodal networks, implicated in top-

down control, may reflect greater demands for top-down modu-

lation of visual association cortices in the context of age-related

declines in the fidelity of sensory signaling ( Setton et al., 2022 ).

The data here suggest that this requirement for greater control re-

sources may be heightened in the context of greater white matter

lesion burden. 

Another notable pattern emerged from the whole-brain RSFC

analyses, suggesting that greater white matter lesion load is as-

sociated with an altered spatial topography of RSFC. Higher le-

sion load was associated with greater connectivity between ante-

rior and posterior regions and lower connectivity among posterior

regions ( Figure 2 , panel D). This pattern was unexpected as long-

range connectivity changes are difficult to isolate in RSFC studies

of older adults due to the amplification of motion-related artifacts

( Power et al., 2012 ). Our ME-fMRI acquisition sequence and ME-ICA

denoising protocol enabled us to isolate BOLD from noise (includ-

ing motion) components, enhancing our ability to detect changes

in these longer-range connections ( Power et al., 2018 ). As we did

not pose any specific spatial predictions, interpretations of this pat-

tern are speculative. However, greater anterior-posterior connectiv-

ity in the context of higher white matter lesion load would be con-

sistent with several prominent theories of neurocognitive aging;

the Posterior to Anterior Shift in Aging ( Davis et al., 2008 ) or the

Compensatory Recruitment of Neural Circuits Hypothesis ( Reuter-

Lorenz & Cappell, 2008 ). Both theories posit that declining sen-

sory functioning imposes greater demands on higher-order atten-

tion and control processes mediated by frontal brain regions. The

greater anterior-posterior connectivity pattern observed here may

reflect a generalized increase in top-down attentional demands

necessary to sharpen sensorineural representations as lesion load

accumulates ( Gazzaley et al., 2005 ; Turner & D’Esposito, 2011 for a

review of this neuromodulatory account). 

7.4. BOLD dimensionality, white matter lesion load and RSFC 

By implementing an ME-fMRI and ME-ICA data acquisition and

analysis protocol, we were able to conduct an exploratory analy-

sis to measure individual differences in BOLD dimensionality. This

novel metric, associated with network integration and dedifferen-

tiation ( Kundu et al., 2017 ), was examined for its relationship with
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lesion load and RSFC patterns. Chronological age is a predictor

of BOLD dimensionality, which declines from adolescence to early

adulthood ( Kundu et al, 2018 ) and continues to decline into older

age ( Setton et al., 2022 ). Here we report that BOLD dimensionality

was associated with both of our measures of white matter lesion

load, however, these associations were not significant when rele-

vant covariates were included in the model. In contrast, BOLD di-

mensionality was robustly and reliably correlated with the connec-

tivity pattern that emerged from the WMH-RSFC analysis. Greater

expression of this WMH-RSFC pattern was associated with lower

dimensionality in the BOLD signal. As such, we consider this as

preliminary evidence that white matter integrity may contribute

to changes in BOLD signal dimensionality into older adulthood. We

interpret this finding as further support for our inference that the

accumulation of white matter pathology may promote a dediffer-

entiated intrinsic network architecture in later life. 

7.5. Limitations and future directions 

There were several limitations to our study that will be im-

portant to address in future research. The cross-sectional nature

of this study limits our ability to infer directionality and conclude

with confidence that WMH lead to functional network reorganiza-

tion, though the reverse is biologically unlikely. Furthermore, we

acknowledge that in addition to WMH, other age-related neurobi-

ological changes not accounted for in this study (e.g., grey matter

loss, metabolic changes) are likely to contribute to changes in func-

tional connectivity that we report here ( Esiri, 2007 ). Sufficiently-

powered longitudinal investigations are required to confirm the na-

ture of these relationships. 

In addition to acceleration of age-related white matter loss re-

ported in the oldest old ( Yang et al., 2016 ), a non-linear trajec-

tory of functional network connectivity across different stages of

older-adulthood has been reported in the longitudinal literature

( Ng et al., 2016; Staffaroni et al., 2018 ). Future work that sam-

ples across the older adult age-cohort (80 + ) would further illu-

minate structure-function associations in healthy aging and could

provide additional insights regarding when these interactions be-

gin to manifest in measurable cognitive changes. 

Finally, while the focus of the current study was to character-

ize global network changes in relation to age-related white mat-

ter pathology, specific regional changes were observed (see Sup-

plementary Table 1 in Supplementary Materials) and would ben-

efit from further exploration to investigate whether the network-

related findings we report are influenced by specific spatial distri-

butions of white matter lesions. However, given the variability in

spatial distributions, such investigations will require large sample

sizes to detect reliable associations. 

8. Conclusion 

Adopting several methodological and analytic innovations, we

comprehensively characterized the global patterns of RSFC associ-

ated with WMH in cognitively normal older adults, advancing our

understanding of these function-structure associations in this pop-

ulation. Older adulthood is associated with an increasing number

and volume of white matter lesions. Accumulating lesion load al-

ters RSFC patterns across the cortex. Greater white matter lesion

load is associated with a dedifferentiated, and likely maladaptive,

network architecture to support complex cognitive functioning in

later life. In contrast, higher lesion load is also associated with

greater visual network integration and anterior-posterior connec-

tivity that has been associated with compensatory functional reor-

ganization in previous work. Taken together these findings suggest
that while clinically silent, white matter lesions may serve as an

accelerant, hastening functional network changes in later life. 
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