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Abstract

Resting-state functional magnetic resonance imaging (rs-fMRI) allows estimation of individual-specific cortical
parcellations. We have previously developed a multi-session hierarchical Bayesian model (MS-HBM) for estimating
high-quality individual-specific network-level parcellations. Here, we extend the model to estimate individual-specific
areal-level parcellations. While network-level parcellations comprise spatially distributed networks spanning the cortex,
the consensus is that areal-level parcels should be spatially localized, that is, should not span multiple lobes. There is
disagreement about whether areal-level parcels should be strictly contiguous or comprise multiple noncontiguous
components; therefore, we considered three areal-level MS-HBM variants spanning these range of possibilities.
Individual-specific MS-HBM parcellations estimated using 10 min of data generalized better than other approaches using
150 min of data to out-of-sample rs-fMRI and task-fMRI from the same individuals. Resting-state functional connectivity
derived from MS-HBM parcellations also achieved the best behavioral prediction performance. Among the three MS-HBM
variants, the strictly contiguous MS-HBM exhibited the best resting-state homogeneity and most uniform within-parcel
task activation. In terms of behavioral prediction, the gradient-infused MS-HBM was numerically the best, but differences
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among MS-HBM variants were not statistically significant. Overall, these results suggest that areal-level MS-HBMs can
capture behaviorally meaningful individual-specific parcellation features beyond group-level parcellations. Multi-resolution
trained models and parcellations are publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_proje
cts/brain_parcellation/Kong2022_ArealMSHBM).

Key words: behavioral prediction, brain parcellation, difference, individual, resting-state functional connectivity

Introduction
The human cerebral cortex comprises hundreds of cortical areas
with distinct function, architectonics, connectivity, and topogra-
phy (Kaas 1987; Felleman and Van Essen 1991; Eickhoff, Consta-
ble, et al. 2018a). These areas are thought to be organized into at
least 6–20 spatially distributed large-scale networks that broadly
subserve distinct aspects of human cognition (Goldman-Rakic
1988; Mesulam 1990; Smith et al. 2009; Bressler and Menon 2010;
Uddin et al. 2019). Accurate parcellation of the cerebral cortex
into areas and networks is therefore an important problem in
systems neuroscience. The advent of in vivo noninvasive brain
imaging techniques, such as functional magnetic resonance
imaging (fMRI), has enabled the delineation of cortical parcels
that approximate these cortical areas (Sereno et al. 1995; Van
Essen and Glasser 2014; Eickhoff, Yeo, et al. 2018b).

A widely used approach for estimating network-level and
areal-level cortical parcellations is resting-state functional con-
nectivity (RSFC). RSFC reflects the synchrony of fMRI signals
between brain regions, while a participant is lying at rest without
performing any explicit task, that is, resting-state fMRI (rs-fMRI;
Biswal et al. 1995; Fox and Raichle 2007; Buckner et al. 2013).
Most RSFC studies have focused on estimating group-level par-
cellations obtained by averaging data across many individuals
(Power et al. 2011; Yeo et al. 2011; Craddock et al. 2012; Zuo et al.
2012; Gordon et al. 2016). These group-level parcellations have
provided important insights into brain network organization but
fail to capture individual-specific parcellation features (Harrison
et al. 2015; Laumann et al. 2015; Braga and Buckner 2017; Gordon,
Laumann, Adeyemo, et al. 2017a). Furthermore, recent studies
have shown that individual-specific parcellation topography is
behaviorally relevant (Salehi et al. 2018; Bijsterbosch et al. 2019;
Kong et al. 2019; Mwilambwe-Tshilobo et al. 2019; Seitzman et al.
2019; Li, Wang, et al. 2019b; Cui et al. 2020), motivating significant
interest in estimating individual-specific parcellations.

Most individual-specific parcellations only account for inter-
subject (between-subject) variability, but not intra-subject
(within-subject) variability. However, intra-subject and intra-
subject RSFC variability can be markedly different across brain
regions (Mueller et al. 2013; Chen et al. 2015; Laumann et al.
2015). For example, the sensory-motor cortex exhibits low inter-
subject variability, but high intra-subject variability (Mueller
et al. 2013; Laumann et al. 2015). Therefore, it is important to
consider both intra-subject and intra-subject variability when
estimating individual-specific parcellations (Mejia et al. 2015,
2018; Kong et al. 2019). We have previously proposed a multi-
session hierarchical Bayesian model (MS-HBM) of individual-
specific network-level parcellation that accounted for both
intra-subject and intra-subject variability (Kong et al. 2019).
We demonstrated that compared with several alternative
approaches, individual-specific MS-HBM networks generalized
better to new resting-fMRI and task-fMRI data from the same
individuals (Kong et al. 2019).

In this study, we extend the network-level MS-HBM to
estimate individual-specific areal-level parcellations. While
network-level parcellations comprise spatially distributed
networks spanning the cortex, the consensus is that areal-level
parcels should be spatially localized (Kaas 1987; Amunts and
Zilles 2015), that is, an areal-level parcel should not span mul-
tiple cortical lobes. Consistent with invasive studies (Amunts
and Zilles 2015), most areal-level parcellation approaches
estimate spatially contiguous parcels (Shen et al. 2013; Honnorat
et al. 2015; Gordon et al. 2016; Chong et al. 2017). However,
a few studies have suggested that individual-specific areal-
level parcels can be topologically disconnected (Glasser et al.
2016; Li, Wang, et al. 2019b). For example, according to Glasser
et al. (2016), area 55b might comprise two disconnected, but
spatially close, components in some individuals. Given the lack
of consensus, we considered three different spatial localization
priors. Across the three priors, the resulting parcels ranged
from being strictly contiguous to being spatially localized with
multiple noncontiguous components.

We compared MS-HBM areal-level parcellations with three
other approaches (Laumann et al. 2015; Schaefer et al. 2018; Li,
Wang, et al. 2019b) in terms of their generalizability to out-of-
sample rs-fMRI and task-fMRI from the same individuals. Fur-
thermore, a vast body of literature has shown that RSFC derived
from group-level parcellations can be used to predict human
behavior (Hampson et al. 2006; Finn et al. 2015; Rosenberg et al.
2016; Li, Kong, et al. 2019a). Therefore, we also investigated
whether RSFC derived from individual-specific MS-HBM parcel-
lations could improve behavioral prediction compared with two
other parcellation approaches (Schaefer et al. 2018; Li, Wang,
et al. 2019b).

Methods
Overview

We proposed the spatially constrained MS-HBM to estimate
individual-specific areal-level parcellations. The model distin-
guished between intra-subject and intra-subject functional con-
nectivity variability, while incorporating spatial contiguity con-
straints. Three different contiguity constraints were considered:
distributed MS-HBM (dMS-HBM), contiguous MS-HBM (cMS-
HBM), and gradient-infused MS-HBM (gMS-HBM). The resulting
MS-HBM parcels ranged from being strictly contiguous (cMS-
HBM) to being spatially localized with multiple topologically
disconnected components (dMS-HBM). Subsequent analyses
proceeded in four stages. First, we explored the pattern of inter-
subject and intra-subject functional variability across the cortex.
Second, we examined the intra-subject reproducibility and inter-
subject similarity of MS-HBM parcellations on two different
datasets. Third, the MS-HBM was compared with three other
approaches using new rs-fMRI and task-fMRI data from the
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same participants. Finally, we investigated whether functional
connectivity of individual-specific parcellations could improve
behavioral prediction.

Multi-session rs-fMRI Datasets

The Human Connectome Project (HCP) S1200 release (Van Essen,
Ugurbil, et al. 2012a; Smith et al. 2013) comprised structural MRI,
rs-fMRI, and task-fMRI of 1094 young adults. All imaging data
were collected on a custom-made Siemens 3T Skyra scanner
using a multiband sequence. Each participant went through two
fMRI sessions on two consecutive days. Two rs-fMRI runs were
collected in each session. Each fMRI run was acquired at 2 mm
isotropic resolution with a time repetition (TR) of 0.72 s and
lasted for 14 min and 33 s. The structural data consisted of one
0.7 mm isotropic scan for each participant.

The Midnight Scanning Club (MSC) multi-session dataset
comprised structural MRI, rs-fMRI, and task-fMRI from 10 young
adults (Gordon, Laumann, Gilmore, et al. 2017b; Gratton et al.
2018). All imaging data were collected on a Siemens Trio 3T MRI
scanner using a 12-channel head matrix coil. Each participant
was scanned for 10 sessions of rs-fMRI data. One rs-fMRI run
was collected in each session. Each fMRI run was acquired at
4 mm isotropic resolution with a TR of 2.2 s and lasted for 30 min.
The structural data were collected across two separate days and
consisted of four 0.8 mm isotropic T1-weighted images and four
0.8 mm isotropic T2-weighted images.

It is worth noting some significant acquisition differences
between the two datasets, including scanner type (e.g., Skyra vs.
Trio), acquisition sequence (e.g., multiband vs. non-multiband),
and scan time (e.g., day vs. midnight). These differences allowed
us to test the robustness of our parcellation approach.

Preprocessing

Details of the HCP preprocessing can be found elsewhere (Van
Essen, Ugurbil, et al. 2012a; Glasser et al. 2013; Smith et al. 2013;
HCP S1200 manual). Of particular importance is that the rs-
fMRI data have been projected to the fs_LR32k surface space
(Van Essen, Glasser, et al. 2012b), smoothed by a Gaussian ker-
nel with 2 mm full-width at half-maximum (FWHM), denoised
with ICA-FIX (Griffanti et al. 2014; Salimi-Khorshidi et al. 2014),
and aligned with MSMAll (Robinson et al. 2014). To eliminate
global and head motion-related artifacts (Burgess et al. 2016;
Siegel et al. 2017), additional nuisance regression and censoring
were performed (Kong et al. 2019; Li, Kong, et al. 2019a). Nui-
sance regressors comprised the global signal and its temporal
derivative. Runs with more than 50% censored frames were
removed. Participants with all four runs remaining (N = 835) were
considered.

In the case of the MSC dataset, we utilized the preprocessed
rs-fMRI data of nine subjects on fs_LR32k surface space. Pre-
processing steps included slice time correction, motion cor-
rection, field distortion correction, motion censoring, nuisance
regression, and bandpass filtering (Gordon, Laumann, Gilmore,
et al. 2017b). Nuisance regressors comprised whole brain, ven-
tricular and white matter signals, as well as motion regressors
derived from Volterra expansion (Friston et al. 1996). The surface
data were smoothed by a Gaussian kernel with 6 mm FWHM.
One participant (MSC08) exhibited excessive head motion and
self-reported sleep (Gordon, Laumann, Gilmore, et al. 2017b;
Seitzman et al. 2019) and was thus excluded from subsequent
analyses.

Functional Connectivity Profiles

As explained in the previous section, the preprocessed rs-fMRI
data from the HCP and MSC datasets have been projected onto
fs_LR32K surface space, comprising 59 412 cortical vertices. A
binarized connectivity profile of each cortical vertex was then
computed as was done in our previous study (Kong et al. 2019).
More specifically, we considered 1483 regions of interest (ROIs)
consisting of single vertices uniformly distributed across the
fs_LR32K surface meshes (Kong et al. 2019). For each rs-fMRI
run of each participant, the Pearson’s correlation between the
fMRI time series at each spatial location (59 412 vertices) and the
1483 ROIs was computed. Outlier volumes were ignored when
computing the correlations. The 59 412 × 1483 RSFC (correlation)
matrices were then binarized by keeping the top 10% of the
correlations to obtain the final functional connectivity profile
(Kong et al. 2019).

We note that because fMRI is spatially smooth and exhibits
long-range correlations, therefore considering only 1483 ROI
vertices (instead of all 59 412 vertices) would reduce compu-
tational and memory demands, without losing much informa-
tion. To verify significant information has not been lost, the
following analysis was performed. For each HCP participant, a
59 412 × 59 412 RSFC matrix was computed from the first rs-fMRI
run. We then correlated every pair of rows of the RSFC matrix,
yielding a 59 412 × 59 412 RSFC similarity matrix for each HCP
participant. An entry in this RSFC similarity matrix indicates
the similarity of the functional connectivity profiles of two
cortical locations. The procedure was repeated but using the
59 412 × 1483 RSFC matrices to compute the 59 412 × 59 412 RSFC
similarity matrices. Finally, for each HCP participant, we corre-
lated the RSFC similarity matrix (generated from 1483 vertices)
and RSFC similarity matrix (generated from 59 412 vertices).
The resulting correlations were high with r = 0.9832 ± 0.0041
(mean ± SD) across HCP participants, suggesting that very little
information was lost by only considering 1483 vertices.

Group-Level Parcellation

We have previously developed a set of high-quality population-
average areal-level parcellations of the cerebral cortex (Schaefer
et al. 2018), which we will refer to as “Schaefer2018.” Although
the Schaefer2018 parcellations are available in different spatial
resolutions, we will mostly focus on the 400-region parcellation
in this paper (Fig. 4A), given that previous work has suggested
that there might be between 300 and 400 human cortical areas
(Van Essen, Glasser, et al. 2012b). The 400-region Schaefer2018
parcellation will be used to initialize the areal-level MS-HBM for
estimating individual-specific parcellations. The Schaefer2018
parcellation will also be used as a baseline in our experiments.

Areal-Level MS-HBM

The areal-level MS-HBM (Fig. 1A) is the same as the network-
level MS-HBM (Kong et al. 2019) except for one crucial detail,
that is, spatial localization prior � (Fig. 1A). Nevertheless, for
completeness, we will briefly explain the other components of
the MS-HBM, although further details can be found elsewhere
(Kong et al. 2019).

We denote the binarized functional connectivity profile of
cortical vertex n during session t of subject s as Xs,t

n . For exam-
ple, the binarized functional connectivity profiles of a posterior
cingulate cortex vertex (X1,1

PCC) and a precuneus vertex (X1,1
pCun)

from the first session of the first subject are illustrated in Fig. 1A
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Figure 1. (A) MS-HBM of individual-specific areal-level parcellations. Xs,t
n denote the RSFC profile at brain location n of subject s during rs-fMRI session t. The shaded

circle indicates that Xs,t
n are the only observed variables. The goal is to estimate the parcel label lsn for subject s at location n given RSFC profiles from all sessions. μ

g
l is

the group-level RSFC profile of parcel l. μs
l is the subject-specific RSFC profile of parcel l. A large εl indicates small inter-subject RSFC variability, that is, the group-level

and subject-specific RSFC profiles are very similar. μ
s,t
l is the subject-specific RSFC profile of parcel l during session t. A large σl indicates small intra-subject RSFC

variability, that is, the subject-level and session-level RSFC profiles are very similar. κl captures inter-region RSFC variability. A large κl indicates small inter-region
variability, that is, two locations from the same parcel exhibit very similar RSFC profiles. Finally, Θl captures inter-subject variability in the spatial distribution of

parcels, smoothness prior V encourages parcel labels to be spatially smooth, and the spatial localization prior � ensures each parcel is spatially localized. The spatial
localization prior � is the crucial difference from the original network-level MS-HBM (Kong et al. 2019). (B) Illustration of three different spatial localization priors.
Individual-specific parcellations of the same HCP participant were estimated using dMS-HBM, cMS-HBM, and gMS-HBM. Four parcels depicted in pink, red, blue, and
yellow are shown here. All four parcels estimated by dMS-HBM were spatially close together but contained two separate components. All four parcels estimated by

cMS-HBM were spatially contiguous. Three parcels (pink, red, and yellow) estimated by gMS-HBM were spatially contiguous, while the blue parcel contained two
separate components.
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(fourth row). The shaded circle indicates that Xs,t
n are the only

observed variables. Based on the observed connectivity profiles
of “all” vertices during “all” sessions of a single subject, the goal
is to assign a parcel label lsn for each vertex n of subject s. Even
though a vertex’s connectivity profiles are likely to be different
across fMRI sessions, the vertex’s parcel label was assumed to be
the same across sessions. For example, the individual-specific
areal-level parcellation of the first subject using data from all
available sessions is illustrated in Fig. 1A (last row).

The multiple layers of the areal-level MS-HBM explicitly dif-
ferentiate inter-subject (between-subject) functional connectiv-
ity variability from intra-subject (within-subject) functional con-
nectivity variability (εl and σl in Fig. 1A). The connectivity profiles
of two vertices belong to the same parcel will not be identical.
This variability is captured by κl (Fig. 1A). Some model param-
eters (e.g., group-level connectivity profiles) will be estimated
from a training set comprising multi-session rs-fMRI data from
multiple subjects. A new participant (possibly from another
dataset) with single-session fMRI data could then be parcellated
without access to the original training data.

The Markov random field (MRF) spatial prior (Fig. 1A last
row) is important because the observed functional connectivity
profiles of individual subjects are generally very noisy. There-
fore, additional priors were imposed on the parcellation. First,
the spatial smoothness prior V encouraged neighboring vertices
(e.g., PCC and pCun) to be assigned to the same parcels. Second,
the inter-subject spatial variability prior Θl,n denote the probabil-
ity of parcel l occurring at a particular spatial location n. The two
priors (V and Θl,n) are also present in the network-level MS-HBM
(Kong et al. 2019).

However, an additional spatial prior is necessary because of
well-documented long-range connections spanning the cortex.
Therefore, with the original MRF prior (Kong et al. 2019), brain
locations with similar functional connectivity profiles could be
grouped together regardless of spatial proximity. In the case
of network-level MS-HBM, this is appropriate because large-
scale networks are spatially distributed, for example, the default
network spans frontal, parietal, temporal, and cingulate cortices.
In the case of areal-level parcellations, there is the expectation
that a single parcel should not span large spatial distances
(Glasser et al. 2016; Gordon et al. 2016; Schaefer et al. 2018).
Therefore, the areal-level MS-HBM incorporates an additional
prior � constraining parcels to be spatially localized (Fig. 1A last
row).

As mentioned in the Introduction, even though there is con-
sensus that individual-specific areal-level parcels should be
spatially localized, there are differing opinions about whether
they should be spatially contiguous. Some studies have enforced
spatially contiguous cortical parcels (Laumann et al. 2015; Gor-
don et al. 2016; Chong et al. 2017) consistent with invasive
studies (Amunts and Zilles 2015). Other studies have estimated
parcels that might comprise multiple spatially close compo-
nents (Glasser et al. 2016; Li, Wang, et al. 2019b). For example,
Glasser and colleagues suggested that area 55b might be split
into two disconnected components in close spatial proximity.
Given the lack of consensus, we consider three possible spatial
localization priors (i.e., �in Fig. 1A):

1. dMS-HBM. Previous studies have suggested that after reg-
istering cortical folding patterns, interindividual variability
in architectonic locations are different across architectonic

areas (Fischl et al. 2008). One of the most spatially variable
architectonic areas is hOc5, which can be located in an adja-
cent sulcus away from the group-average location (Yeo et al.
2010a, 2010b). This variability corresponded to about 30 mm.
Therefore, similar to Glasser et al. (2016), � comprises a spa-
tial localization prior constraining each individual-specific
parcel to be within 30 mm of the group-level Schaefer2018
parcel boundaries. We note that this prior only guarantees
an individual-specific parcel to be spatially localized, but
the parcel might comprise multiple distributed components
(Fig. 1B left panel). We refer to this prior as dMS-HBM.

2. cMS-HBM. In addition to the 30 mm prior from dMS-HBM,
we include a spatial localization prior encouraging vertices
comprising a parcel to not be too far from the parcel center,
as was done in our previous study (Schaefer et al. 2018). If
this spatial contiguity prior is sufficiently strong, then all
individual-specific parcels will be spatially connected (Fig. 1B
middle panel). However, an overly strong prior will result
overly round parcels, which is not biologically plausible (Vogt
2009). To ameliorate this issue, the estimation procedure
starts with a very small weight on this spatial contiguity prior
and then progressively increases the weight to ensure spatial
contiguity. Thus, we refer to this prior as cMS-HBM. We note
that requiring parcels to be spatially connected within an
MRF framework is nontrivial; our approach is significantly
less computationally expensive than competing approaches
(Nowozin and Lampert 2010; Honnorat et al. 2015).

3. gMS-HBM. A well-known areal-level parcellation approach
is the local gradient approach, which detects local abrupt
changes (i.e., gradients) in RSFC across the cortex (Cohen
et al. 2008). Our previous study (Schaefer et al. 2018) has
suggested the utility of combining local gradient (Cohen
et al. 2008; Gordon et al. 2016) and global clustering (Yeo
et al. 2011) approaches for estimating areal-level parcella-
tions. Therefore, we complemented the spatial contiguity
prior in cMS-HBM with a prior based on local gradients in
RSFC, which encouraged adjacent brain locations with gentle
changes in functional connectivity to be grouped into the
same parcel. In practice, we found that the gradient-infused
prior, together with a very weak spatial contiguity prior,
dramatically increased the number of spatially contiguous
parcels (Fig. 1B right panel). Furthermore, the parcels are also
less round than cMS-HBM, which is in our opinion more
biologically plausible. We refer to this prior as gMS-HBM.

A more detailed mathematical explanation of the model can
be found in Supplementary Methods S1. Given a dataset of sub-
jects with multi-session rs-fMRI data, a variational Bayes expec-
tation–maximization (VBEM) algorithm can be used to estimate
the following model parameters (Kong et al. 2019): group-level
parcel connectivity profiles μ

g
l , the inter-subject functional con-

nectivity variability εl, the intra-subject functional connectivity
variability σl, the spatial smoothness prior V, and the inter-
subject spatial variability prior Θl. The individual-specific areal-
level parcellation of a new participant could then be generated
using these estimated group-level priors without access to the
original training data. Furthermore, although the model requires
multi-session fMRI data for parameter estimation, it can be
applied to a single-session fMRI data from a new participant
(Kong et al. 2019). Details of the VBEM algorithm can be found
in Supplementary Methods S2.
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Characterizing Inter-subject and Intra-Subject
Functional Connectivity Variability

Previous studies have shown that sensory-motor regions exhibit
lower inter-subject, but higher intra-subject functional connec-
tivity variability than association regions (Mueller et al. 2013;
Laumann et al. 2015; Kong et al. 2019). Therefore, we first eval-
uate whether estimates of areal-level inter-subject and intra-
subject variability were consistent with previous work (Fig. 2A).
The HCP dataset was divided into training (N = 40), validation
(N = 40), and test (N = 755) sets. Each HCP participant underwent
two fMRI sessions on two consecutive days. Within each session,
there were two rs-fMRI runs. All four runs were utilized.

The parameters of three MS-HBM variants (dMS-HBM, cMS-
HBM, and gMS-HBM) were estimated. More specifically, the
group-level parcel connectivity profiles μ

g
l , the inter-subject

RSFC variability εl, the inter-subject RSFC variability σl, and
inter-subject spatial variability prior Θl were estimated using
the HCP training set (Fig. 2A). We tuned the “free” parameters
(associated with the spatial smoothness prior V and spatial
localization prior �) using the HCP validation set (Fig. 2A). The
Schaefer2018 400-region group-level parcellation (Fig. 4A) was
used to initialize the optimization procedure. The final trained
MS-HBMs (Fig. 2A) were used in all subsequent analyses.

Intra-Subject Reproducibility and Inter-subject
Similarity of MS-HBM Parcellations

Within-subject reliability is important for clinical applications
(Shehzad et al. 2009; Birn et al. 2013; Zuo and Xing 2014; Zuo et al.
2019). Having verified that the spatial patterns of intra-subject
and intra-subject functional connectivity variability were con-
sistent with previous work, we further characterized the intra-
subject reproducibility and intra-subject similarity of individual-
specific MS-HBM parcellations (Fig. 2B). The three trained mod-
els (dMS-HBM, cMS-HBM, and gMS-HBM) were applied to the
HCP test set. Individual-specific MS-HBM parcellations were
independently estimated using the first two runs (day 1) and the
last two runs (day 2).

To evaluate the reproducibility of individual-specific parcel-
lations, the Dice coefficient was computed for each parcel from
the two parcellations of each participant:

Dice
(
l1s , l2s

) = 2 × #vertices that overlap between parcels l1s and l2s
#vertices in parcel l1s + #vertices in parcel l2s

where l1s and l2s are parcel l from the two parcellations of subject
s. The Dice coefficient is widely used for comparing parcellation
or segmentation overlap (Destrieux et al. 2010; Sabuncu et al.
2010; Birn et al. 2013; Blumensath et al. 2013; Arslan et al. 2015;
Honnorat et al. 2015; Salehi et al. 2018). The Dice coefficient is
equal to 1 if there is perfect overlap between parcels and zero
if there is no overlap between parcels. The Dice coefficients
were averaged across all participants to provide insights into
regional variation in intra-subject parcel similarity. Finally, the
Dice coefficients were averaged across all parcels to provide an
overall measure of intra-subject parcellation reproducibility.

To evaluate intra-subject parcellation similarity, for each pair
of participants, the Dice coefficient was computed for each
parcel. Since there were two parcellations for each participant,
there were a total of four Dice coefficients for each parcel,
which were then averaged. Furthermore, the Dice coefficients
were averaged across all pairs of participants to provide
insights into regional variation in intra-subject parcel similarity.

Finally, the dice coefficients were averaged across all parcels
to provide an overall measure of intra-subject parcellation
similarity.

To evaluate whether the parameters of MS-HBM algorithms
from one dataset could be generalized to another dataset with
different acquisition protocols and preprocessing pipelines, we
used the HCP model parameters to estimate individual-specific
parcellations in the MSC dataset. More specifically, the MS-HBM
parcellations were independently estimated using the first five
sessions and the last five sessions for each MSC participant
(Fig. 2B).

Geometric Properties of MS-HBM Parcellations

The three MS-HBM variants impose different spatial priors on
areal-level parcellations. To characterize the geometric proper-
ties of the MS-HBM parcels (Fig. 2C), the three trained models
(dMS-HBM, cMS-HBM, and gMS-HBM) were applied to the HCP
test set using all four rs-fMRI runs. We then computed two met-
rics to characterize the geometry of the parcellations. First, for
each parcellation, the number of spatially disjoint components
was computed for each parcel and averaged across all parcels.
Second, for each parcellation, a roundness metric was computed
for each parcel and averaged across all parcels. Here, the round-
ness of a parcel is defined as 1 − #parcel boundary vertices

#vertices contained in the parcel ; a
larger value indicates that a parcel is rounder.

Comparison with Alternative Approaches

Here, we compared the three MS-HBM approaches (dMS-HBM,
cMS-HBM, and gMS-HBM) with three alternative approaches.
The first approach was to apply the Schaefer2018 400-region
group-level parcellation to individual subjects. The second
approach is the well-known gradient-based boundary mapping
algorithm that has been widely utilized to estimate individual-
specific areal-level parcellation (Laumann et al. 2015; Gordon,
Laumann, Gilmore, et al. 2017b). We will refer to this second
approach as “Laumann2015” (https://sites.wustl.edu/peterse
nschlaggarlab/resources). The third approach is the recent
individual-specific areal-level parcellation algorithm of Li,
Wang, et al. (2019b) (http://nmr.mgh.harvard.edu/bid/DownLoa
d.html), which we will refer to as “Li2019.”

Evaluating the quality of individual-specific resting-state
parcellations is difficult because of a lack of ground truth.
Here, we considered two common evaluation metrics (Gordon
et al. 2016; Chong et al. 2017; Schaefer et al. 2018; Kong
et al. 2019): resting-state connectional homogeneity and
task functional inhomogeneity (i.e., uniform task activa-
tion; see below). These metrics encode the principle that if
an individual-specific parcellation captured the areal-level
organization of the individual’s cerebral cortex, then each
parcel should have homogeneous connectivity and function.
Furthermore, we also compared the relative utility of the
different parcellation approaches for RSFC-based behavioral
prediction.

Resting-State Connectional Homogeneity

Resting-state connectional homogeneity was defined as the
averaged Pearson’s correlations between rs-fMRI time courses
of all pairs of vertices within each parcel, adjusted for parcel
size and summed across parcels (Schaefer et al. 2018; Kong
et al. 2019). Higher resting-state homogeneity means that
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Figure 2. Flowcharts of analyses characterizing MS-HBMs. (A) Training MS-HBMs with HCP training and validation sets, as well as characterizing intra-subject and

intra-subject RSFC variability. (B) Exploring intra-subject reproducibility and intra-subject similarity of MS-HBM parcellations using HCP test set and MSC dataset. (C)
Characterizing geometric properties of MS-HBM parcellations using HCP test set. Shaded boxes (HCP test set and MSC dataset) were solely used for evaluation and not
used at all for training or tuning the MS-HBM models.

vertices within the same parcel share more similar time courses.
Therefore, higher resting-state homogeneity indicates better
parcellation quality.

For each participant from the HCP test set (N = 755), we
used one run to infer the individual-specific parcellation and
computed resting-state homogeneity with the remaining three

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab101/6263393 by York U

niversity Libraries user on 09 June 2021



8 Cerebral Cortex, 2021, Vol. 00, No. 00

runs. For the MSC dataset (N = 9), we used one session to infer
the individual-specific parcellation and computed resting-state
homogeneity with the remaining nine sessions (Fig. 3A).

Because MSC participants have large amount of rs-fMRI data
(300 min), we also parcellated each MSC participant using dif-
ferent length of rs-fMRI data (10–150 min) and evaluated the
resting-state homogeneity with the remaining five sessions.
This allowed us to estimate how much the algorithms would
improve with more data (Fig. 3B).

When comparing resting-state homogeneity between parcel-
lations, the effect size (Cohen’s d) of differences and a two-sided
paired-sample t-test (dof = 754 for HCP, dof = 8 for MSC) were
computed.

Task Functional Inhomogeneity

Task functional inhomogeneity was defined as the standard
deviation (SD) of (activation) z-values within each parcel for
each task contrast, adjusted for parcel size and summed across
parcels (Gordon, Laumann, Gilmore, et al. 2017b; Schaefer et al.
2018). Lower task inhomogeneity means that activation within
each parcel is more uniform. Therefore, lower task inhomogene-
ity indicates better parcellation quality. The HCP task-fMRI data
consisted of seven task domains: social cognition, motor, gam-
bling, working memory, language processing, emotional pro-
cessing, and relational processing (Barch et al. 2013). The MSC
task-fMRI data consisted of three task domains: motor, mixed,
and memory (Gordon, Laumann, Gilmore, et al. 2017b). Each
task domain contained multiple task contrasts. All available task
contrasts were utilized.

For each participant from the HCP test set (N = 755) and
MSC dataset (N = 9), all rs-fMRI sessions were used to infer the
individual-specific parcellation (Fig. 3C). The individual-specific
parcellation was then used to evaluate task inhomogeneity
for each task contrast and then averaged across all available
contrasts within a task domain, resulting in a single task
inhomogeneity measure per task domain. When comparing
between parcellations, we averaged the task inhomogeneity
metric across all contrasts within a task domain before the
effect size (Cohen’s d) of differences and a two-sided paired-
sample t-test (dof = 754 for HCP, dof = 8 for MSC) were computed
for each domain.

Methodological Considerations

It is important to note that a parcellation with more parcels
tends to have smaller parcel size, leading to higher resting-
state homogeneity and lower task inhomogeneity. For example,
if a parcel comprised two vertices, then the parcel would
be highly homogeneous. In our experiments, the MS-HBM
algorithms and Li2019 were initialized with the 400-region
Schaefer2018 group-level parcellation, resulting in the same
number of parcels as Schaefer2018, that is, 400 parcels. This
allowed for a fair comparison among MS-HBMs, Li2019, and
Schaefer2018.

However, parcellations estimated by Laumann2015 had a
variable number of parcels across participants. Furthermore,
Laumann2015 parcellations also had a significant number of
vertices between parcels that were not assigned to any parcel,
which has the effect of artificially increasing resting homogene-
ity and decreasing task inhomogeneity. Therefore, when com-
paring MS-HBM with Laumann2015 using resting-state homo-
geneity (Fig. 3A) and task inhomogeneity (Fig. 3C), we performed

a post hoc processing of MS-HBM parcellations to match the
number of parcels and unlabeled vertices of Laumann2015 par-
cellations (Supplementary Methods S3).

In addition, the Laumann2015 approach yielded different
numbers of parcels within an individual with different lengths of
rs-fMRI data. Therefore, Laumann2015 was also excluded from
the analysis of out-of-sample resting-state homogeneity with
different lengths of rs-fMRI data (Fig. 3B).

RSFC-Based Behavioral Prediction

Most studies utilized a group-level parcellation to derive RSFC
for behavioral prediction (Dosenbach et al. 2010; Finn et al.
2015; Dubois et al. 2018; Weis et al. 2020; Li, Kong, et al. 2019a).
Here, we investigated if RSFC derived from individual-specific
parcellations can improve behavioral prediction performance.
As before (He et al. 2020; Kong et al. 2019; Li, Kong, et al. 2019a),
we considered 58 behavioral phenotypes measuring cognition,
personality, and emotion from the HCP dataset. Three partici-
pants were excluded from further analyses because they did not
have all behavioral phenotypes, resulting in a final set of 752 test
participants.

The different parcellation approaches were applied to each
HCP test participant using all four rs-fMRI runs (Fig. 3D). The Lau-
mann2015 approach yielded parcellations with different num-
bers of parcels across participants, so there was a lack of intra-
subject parcel correspondence. Therefore, we were unable to
perform behavioral prediction with the Laumann2015 approach,
so Laumann2015 was excluded from this analysis.

Given 400-region parcellations from different approaches
(Schaefer2018; Li2019; dMS-HBM, cMS-HBM, gMS-HBM), func-
tional connectivity was computed by correlating averaged
time courses of each pair of parcels, resulting in a 400 × 400
RSFC matrix for each HCP test participant (Fig. 3D). Consistent
with our previous work (He et al. 2020; Kong et al. 2019; Li,
Wang, et al. 2019b), kernel regression was utilized to predict
each behavioral measure in individual participants. Suppose
y is the behavioral measure (e.g., fluid intelligence) and FC
is the functional connectivity matrix of a test participant.
In addition, suppose yi is the behavioral measure (e.g., fluid
intelligence) and FCi is the individual-specific functional
connectivity matrix of the ith training participant. Then
kernel regression would predict the behavior of the test
participant as the weighted average of the behaviors of the
training participants: y ≈ ∑

i∈training setSimilarity(FCi, FC)yi. Here,
Similarity(FCi, FC) is the Pearson’s correlation between the
functional connectivity matrices of the ith training participant
and the test participant. Because the functional connectivity
matrices were symmetric, only the lower triangular portions of
the matrices were considered when computing the correlation.
Therefore, kernel regression encodes the intuitive idea that
participants with more similar RSFC patterns exhibited similar
behavioral measures.

In practice, an l2-regularization term (i.e., kernel ridge regres-
sion) was included to reduce overfitting (Supplementary Meth-
ods S4; Murphy 2012). We performed 20-fold cross-validation
for each behavioral phenotype. Family structure within the HCP
dataset was taken into account by ensuring participants from
the same family (i.e., with either the same mother ID or father
ID) were kept within the same fold and not split across folds.
For each test fold, an inner-loop 20-fold cross-validation was
repeatedly applied to the remaining 19 folds with different
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Figure 3. Flowcharts of comparisons with other algorithms. (A) Comparing out-of-sample resting-state homogeneity across different parcellation approaches applied
to a single rs-fMRI session. (B) Comparing out-of-sample resting-state homogeneity across different parcellation approaches applied to different lengths of rs-fMRI
data. (C) Comparing task inhomogeneity across different approaches. (D) Comparing RSFC-based behavioral prediction accuracies across different approaches. Across
all analyses, MS-HBM parcellations were estimated using the trained models from Figure 2A. We remind the reader that the trained MS-HBMs were estimated using

the HCP training and validation sets (Fig. 2A), which did not overlap with the HCP test set utilized in the current set of analyses. In the case of analyses (A) and (B),
only a portion of rs-fMRI data was used to estimate the parcellations. The remaining rs-fMRI data were used to compute out-of-sample resting-state homogeneity. For
analyses (C) and (D), all available rs-fMRI data were used to estimate the parcellations. Finally, we note that the local gradient approach (Laumann2015) does not yield
a fixed number of parcels. Thus, the number of parcels is variable within an individual with different lengths of rs-fMRI data, so Laumann2015 was not considered for

analysis B. Similarly, the number of parcels is different across participants, so the sizes of the RSFC matrices are different across participants. Therefore, Laumann2015
was also not utilized for analysis D.
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regularization parameters. The optimal regularization parame-
ter from the inner-loop cross-validation was then used to pre-
dict the behavioral phenotype in the test fold. Accuracy was
measured by correlating the predicted and actual behavioral
measure across all participants within the test fold (Finn et al.
2015; Kong et al. 2019; Li, Wang, et al. 2019b). By repeating the
procedure for each test fold, each behavior yielded 20 correla-
tion accuracies, which were then averaged across the 20 folds.
Because a single 20-fold cross-validation might be sensitive
to the particular split of the data into folds (Varoquaux et al.
2017), the above 20-fold cross-validation was repeated 100 times.
The mean accuracy and SD across the 100 cross-validations
will be reported. When comparing between parcellations, a cor-
rected resampled t-test for repeated k-fold cross-validation was
performed (Bouckaert and Frank 2004). We also repeated the
analyses using coefficient of determination (COD) as a metric
of prediction performance.

As certain behavioral measures are known to correlate with
motion (Siegel et al. 2017), we regressed out age, sex, framewise
displacement, DVARS, body mass index, and total brain volume
from the behavioral data before kernel ridge regression. To pre-
vent any information leak from the training data to test data,
the nuisance regression coefficients were estimated from the
training folds and applied to the test fold.

Code and Data Availability

Code for this work is freely available at the GitHub repository
maintained by the Computational Brain Imaging Group (https://
github.com/ThomasYeoLab/CBIG). The Schaefer2018 group-
level parcellation and code are available here (https://github.
com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_
parcellation/Schaefer2018_LocalGlobal), while the areal-level
MS-HBM parcellation code is available here (https://github.com/
ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parce
llation/Kong2022_ArealMSHBM). We have also provided trained
MS-HBM parameters at different spatial resolutions, ranging
from 100 to 1000 parcels.

We note that the computational bottleneck for gMS-HBM is
the computation of the local gradients (Laumann et al. 2015).
We implemented a faster and less memory-intensive version of
the local gradient computation by subsampling the functional
connectivity matrices (Supplementary Methods S1.3). Comput-
ing the gradient map of a single HCP run requires 15 min and
3 GB of RAM, compared with 4 h and 40 GB of RAM in the
original version. The resulting gradient maps were highly sim-
ilar to the original gradient maps (r = 0.97). The faster gradient
code can be found here (https://github.com/ThomasYeoLab/CBI
G/tree/master/utilities/matlab/speedup_gradients).

The individual-specific parcellations for the HCP and MSC,
together with the associated RSFC matrices, are available here
(https://balsa.wustl.edu/study/show/Pr8jD and https://github.
com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_
parcellation/Kong2022_ArealMSHBM).

Results
Overview

Three variations of the MS-HBM with different contiguity
constraints (Fig. 1) were applied to two multi-session rs-fMRI
datasets to ensure that the approaches were generalizable
across datasets with significant acquisition and processing

differences. After confirming previous literature (Mueller et al.
2013; Laumann et al. 2015; Kong et al. 2019) that intra-subject and
intra-subject RSFC variabilities were different across the cortex,
we then established that the MS-HBM algorithms produced
individual-specific areal-level parcellations with better quality
than other approaches. Finally, we investigated whether RSFC
derived from MS-HBM parcellations could be used to improve
behavioral prediction.

Sensory-Motor Cortex Exhibits Lower Intra-Subject but
Higher Intra-Subject Functional Connectivity Variability
Than Association Cortex

The parameters of gMS-HBM, dMS-HBM and cMS-HBM were
estimated using the HCP training set. Supplementary Figure S1
shows the intra-subject RSFC variability (εl) and intra-subject
RSFC variability (σl) overlaid on corresponding Schaefer2018
group-level parcels. The pattern of intra-subject and intra-
subject RSFC variability was consistent with previous work
(Mueller et al. 2013; Laumann et al. 2015; Kong et al. 2019). More
specifically, sensory-motor parcels exhibited lower intra-subject
RSFC variability than association cortical parcels. On the other
hand, association cortical parcels exhibited lower intra-subject
RSFC variability than sensory-motor parcels.

Individual-Specific MS-HBM Parcellations Exhibit High
Intra-Subject Reproducibility and Low Intra-Subject
Similarity

To assess intra-subject reproducibility and intra-subject similar-
ity, the three MS-HBM variants were tuned on the HCP train-
ing and validation sets and then applied to the HCP test set.
Individual-specific parcellations were generated by using rs-
fMRI data from day 1 (first 2 runs) and day 2 (last 2 runs)
separately for each participant. All 400 parcels were present in
99% of the participants.

Figure 4 shows the intra-subject and intra-subject spatial
similarity (Dice coefficient) of parcels from the three MS-HBM
variants in the HCP test set. Intra-Subject reproducibility was
greater than intra-subject similarity across all parcels. Con-
sistent with our previous work on individual-specific cortical
networks (Kong et al. 2019), sensory-motor parcels were more
spatially similar across participants than association cortical
parcels. Sensory-motor parcels also exhibited greater within-
subject reproducibility than association cortical parcels.

Overall, gMS-HBM, dMS-HBM, and cMS-HBM achieved intra-
subject reproducibility of 81.0%, 80.4%, and 76.1%, respectively,
and intra-subject similarity of 68.2%, 68.1%, and 63.9%, respec-
tively. We note that these metrics cannot be easily used to
judge the quality of the parcellations. For example, gMS-HBM
has higher intra-subject reproducibility and higher intra-subject
similarity than cMS-HBM, so we cannot simply conclude that
one is better than the other.

Figure 5A and Supplementary Figure S2 show the gMS-HBM
parcellations of four representative HCP participants. Supple-
mentary Figures S3 and S4 show the dMS-HBM and cMS-HBM
parcellations of the same HCP participants. Consistent with pre-
vious studies of individual-specific parcellations (Glasser et al.
2016; Chong et al. 2017; Gordon, Laumann, Gilmore, et al. 2017b;
Salehi et al. 2018; Seitzman et al. 2019; Li, Wang, et al. 2019b), par-
cel shape, size, location, and topology were variable across par-
ticipants. Parcellations were highly similar within each partic-
ipant with individual-specific parcel features highly preserved
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Figure 4. Individual-specific MS-HBM parcellations show high within-subject reproducibility and low across-subject similarity in the HCP test set. (A) The 400-region

Schaefer2018 group-level parcellation. (B) Intra-Subject spatial similarity for different parcels. (C) Intra-Subject reproducibility for different parcels. Yellow color
indicates higher overlap. Red color indicates lower overlap. Individual-specific MS-HBM parcellations were generated by using day 1 (first two runs) and day 2 (last two
runs) separately for each participant. Sensory-motor parcels exhibited higher intra-subject reproducibility and intra-subject similarity than association parcels.

across sessions (Fig. 5B). Similar results were obtained with dMS-
HBM and cMS-HBM (Fig. 5B).

The trained MS-HBM from the HCP dataset was also applied
to the MSC dataset. The MS-HBM parcellations of four repre-
sentative MSC participants are shown in Supplementary Figures
S5–S7. Similar to the HCP dataset, the parcellations also captured
unique features that were replicable across the first five sessions
and the last five sessions. Overall, gMS-HBM, dMS-HBM, and
cMS-HBM achieved intra-subject reproducibility of 75.5%, 73.9%,

and 67.8%, respectively, and intra-subject similarity of 50.6%,
47.1%, and 42.9%, respectively.

Geometric Properties of MS-HBM Parcellations

In the HCP test set, the average number of spatially disconnected
components per parcel was 1.95 ± 0.29 (mean ± SD), 1 ± 0, and
1.06 ± 0.07 for dMS-HBM, cMS-HBM, and gMS-HBM, respectively.
In the case of dMS-HBM, the maximum number of spatially

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab101/6263393 by York U

niversity Libraries user on 09 June 2021

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab101#supplementary-data


12 Cerebral Cortex, 2021, Vol. 00, No. 00

Figure 5. MS-HBM parcellations exhibit individual-specific features that are replicable across sessions. (A) The 400-region individual-specific gMS-HBM parcellations
were estimated using rs-fMRI data from day 1 and day 2 separately for each HCP test participant. Right hemisphere parcellations are shown in Supplementary Figure S2.
See Supplementary Figures S3 and S4 for dMS-HBM and cMS-HBM. (B) Replicable individual-specific parcellation features in a single HCP test participant for dMS-HBM,

cMS-HBM, and gMS-HBM.

disconnected components (across all participants and parcels)
was 11 (Supplementary Fig. S8). In the case of gMS-HBM,
the maximum number of spatially disconnected components
(across all participants and parcels) was 3 (Supplementary Fig.

S8). On the other hand, the average roundness of the parcel-
lations was 0.56 ± 0.02 (mean ± SD), 0.60 ± 0.01, and 0.58 ± 0.02
for dMS-HBM, cMS-HBM, and gMS-HBM, respectively. Overall,
gMS-HBM parcels have much fewer spatially disconnected
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components than dMS-HBM, while achieving intermediate
roundness between dMS-HBM and cMS-HBM.

Individual-Specific MS-HBM Parcels Exhibit Higher
Resting-State Homogeneity Than Other Approaches

Individual-specific areal-level parcellations were estimated
using a single rs-fMRI session for each HCP test participant
and each MSC participant. Resting-state homogeneity was
evaluated using leave-out sessions in the HCP (Fig. 6A,B) and
MSC (Fig. 6C,D and Supplementary Fig. S9) datasets. We note that
comparisons with Laumann2015 are shown on separate plots
(Fig. 6B,D) because Laumann2015 yielded different number of
parcels across participants. Therefore, we matched the number
of MS-HBM parcels to Laumann2015 for each participant for fair
comparison (see Methods).

Across both HCP and MSC datasets, the MS-HBM algorithms
achieved better homogeneity than the group-level parcellation
(Schaefer2018) and two individual-specific areal-level parcel-
lation approaches (Laumann2015 and Li2019). Compared with
Schaefer2019, the three MS-HBM variants achieved an improve-
ment ranging from 3.4% to 7.5% across the two datasets (average
improvement = 5.2%, average Cohen’s d = 3.8, largest P = 1.9e−6).
Compared with Li2019, the three MS-HBM variants achieved
an improvement ranging from 2.2% to 4.9% across the two
datasets (average improvement = 3.4%, average Cohen’s d = 3.9,
largest P = 5.5e−6). Compared with Laumann2015, the three MS-
HBM variants achieved an improvement ranging from 6.3% to
7.8% across the two datasets (average improvement = 6.7%, aver-
age Cohen’s d = 7.5, largest P = 1.2e−9). All reported P values were
significant after correcting for multiple comparisons with false
discovery rate (FDR) q < 0.05.

Among the three MS-HBM variants, cMS-HBM achieved
the highest homogeneity, while dMS-HBM was the least
homogeneous. In the HCP dataset, cMS-HBM achieved an
improvement of 0.19% (Cohen’s d = 0.5, P = 3.5e−38) over gMS-
HBM, and gMS-HBM achieved an improvement of 0.76% (Cohen’s
d = 2.5, P = 3.5e−38) over dMS-HBM. In the MSC dataset, cMS-HBM
achieved an improvement of 1.1% (Cohen’s d = 3.5, P = 6.3e−6)
over gMS-HBM, and gMS-HBM achieved an improvement of 0.7%
(Cohen’s d = 2.6, P = 6.1e−5) over dMS-HBM. All reported P values
were significant after correcting for multiple comparisons with
FDR q < 0.05.

Individual-specific parcellations were estimated with
increasing length of rs-fMRI data in the MSC dataset. Resting-
state homogeneity was evaluated using leave-out sessions
(Fig. 7A and Supplementary Fig. S10). We note that Laumann2015
parcellations had different number of parcels with different
length of rs-fMRI data. Therefore, the resting-state homogeneity
of Laumann2015 parcellations was not comparable across
different length of rs-fMRI data, so the results were not
shown. Because Schaefer2018 is a group-level parcellation, the
parcellation stays the same regardless of the amount of data.
Therefore, the performance of the Schaefer2018 group-level
parcellation remained constant regardless of the amount of
data. Surprisingly, the performance of the Li2019 individual-
specific parcellation approach also remained almost constant
regardless of the amount of data. One possible reason is that
Li2019 constrained individual-specific parcels to overlap with
group-level parcels. This might be an overly strong constraint,
which could not be overcome with more rs-fMRI data. By
contrast, the MS-HBM algorithms (dMS-HBM, cMS-HBM, and
gMS-HBM) exhibited higher homogeneity with increased length

of rs-fMRI data, suggesting that MS-HBM models were able to
improve with more rs-fMRI data.

Furthermore, using just 10 min of rs-fMRI data, the MS-
HBM algorithms achieved better homogeneity than Lau-
mann2015 and Li2019 using 150 min of rs-fMRI data (Fig. 7B
and Supplementary Fig. S10). More specifically, compared with
Laumann2015 using 150 min of rs-fMRI data, dMS-HBM, cMS-
HBM, and gMS-HBM using 10 min of rs-fMRI data achieved
an improvement of 2.6% (Cohen’s d = 2.7, P = 3.6e−5), 6.2%
(Cohen’s d = 5.5, P = 1.9e−7), and 5.6% (Cohen’s d = 6.1, P = 2.3e−7),
respectively. Compared with Li2019 using 150 min of rs-fMRI
data, dMS-HBM, cMS-HBM, and gMS-HBM using 10 min of rs-
fMRI data achieved an improvement of 0.4% (Cohen’s d = 0.4,
not significant), 2.4% (Cohen’s d = 1.9, P = 4.3e−4), and 1.5%
(Cohen’s d = 1.7, P = 1.0e−3), respectively. All reported P values
were significant after correcting for multiple comparisons with
FDR q < 0.05.

Individual-Specific MS-HBM Parcels Exhibit Lower
Task Inhomogeneity Than Other Approaches

Individual-specific parcellations were estimated using all rs-
fMRI sessions from the HCP test set and MSC dataset. Task
inhomogeneity was evaluated using task fMRI. Figure 8 and
Supplementary Figure S11 show the task inhomogeneity of
all approaches for all task domains in the MSC and HCP
datasets, respectively. Compared with Schaefer2019, the three
MS-HBM variants achieved an improvement ranging from
0.9% to 5.9% across all task domains and datasets (average
improvement = 3.2%, average Cohen’s d = 2.4, largest P = 2.0e−3).
Compared with Li2019, the three MS-HBM variants achieved an
improvement ranging from 0.8% to 5.0% across all task domains
and datasets (average improvement = 2.7%, average Cohen’s
d = 2.2, largest P = 1.8e−3). Compared with Laumann2015, the
three MS-HBM variants achieved an improvement ranging from
1.9% to 28.1% across all task domains and datasets (average
improvement = 6.7%, average Cohen’s d = 2.3, largest P = 0.017).
All reported P values were significant after correcting for
multiple comparisons with FDR q < 0.05. In the case of MSC,
these improvements were observed in almost every single
participant across all tasks (Fig. 8).

Among the three MS-HBM variants, cMS-HBM achieved
the best task inhomogeneity, while dMS-HBM achieved the
worst task inhomogeneity. Compared with gMS-HBM, cMS-HBM
achieved an improvement ranging from 0.03% to 0.92% across
all task domains and datasets (average improvement = 0.3%,
average Cohen’s d = 0.6, largest P = 0.013). Compared with
dMS-HBM, gMS-HBM achieved an improvement ranging from
0.06% to 1.1% across all task domains and datasets (average
improvement = 0.5%, average Cohen’s d = 1.1, largest P = 1.2e−3).
All reported P values were significant after correcting for
multiple comparisons with FDR q < 0.05.

Functional Connectivity of Individual-Specific MS-HBM
Parcels Improves Behavioral Prediction

Individual-specific parcellations were estimated using all rs-
fMRI sessions from the HCP test set. The RSFC of the individual-
specific parcellations was used for predicting 58 behavioral mea-
sures. We note that the number of parcels was different across
participants for Laumann2015, so Laumann2015 could not be
included for this analysis.
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Figure 6. MS-HBM parcellations achieved better out-of-sample resting-state homogeneity than other approaches. (A) The 400-region individual-specific parcellations
were estimated using a single rs-fMRI session and resting-state homogeneity was computed on the remaining sessions for each HCP test participant. Error bars
correspond to standard errors. (B) Same as (A) except that Laumann2015 allowed different number of parcels across participants, so we matched the number of MS-

HBM parcels to Laumann2015 for each participant. Therefore, the numbers for (A) and (B) were not comparable. (C) The 400-region individual-specific parcellations
were estimated using a single rs-fMRI session and resting-state homogeneity was computed on the remaining sessions for each MSC participant. Each circle represents
one MSC participant. Dash lines connect the same participants. (D) Same as (C) except that Laumann2015 allowed different number of parcels across participants, so
we matched the number of MS-HBM parcels to Laumann2015 for each participant. Results for dMS-HBM and cMS-HBM in the MSC dataset are shown in Supplementary

Figure S9.

Supplementary Tables S2 and S3 summarize the average
prediction accuracies (Pearson’s correlation) for different sets
of behavioral measures, including cognitive, personality, and
emotion measures. Overall, individual-specific functional con-
nectivity strength from MS-HBM parcellations achieved bet-
ter prediction performance than other approaches. In general,

gMS-HBM achieved better prediction performance than dMS-
HBM and cMS-HBM, but differences were not significant.

Figure 9A shows the average prediction accuracies of all 58
behaviors across different parcellation approaches. Compared
with Schaefer2018 and Li2019, gMS-HBM achieved improve-
ments of 16% (P = 5.0e−4) and 18% (P = 5.4e−4), respectively.
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Figure 7. MS-HBM parcellations achieved better out-of-sample resting-state homogeneity with less amount of data. (A) The 400-region individual-specific parcellations
were estimated using different lengths of rs-fMRI data for each MSC participant. Resting-state homogeneity was evaluated using leave-out sessions. Error bars
correspond to standard errors. (B) The 400-region individual-specific parcellations were estimated for each MSC participant using 10 min of rs-fMRI data for gMS-HBM
and 150 min of rs-fMRI data for Li2019. Each circle represents one MSC participant. Dash lines connect the same participants. (C) Same as (B) except that Laumann2015

yielded different number of parcels for each participant, so we matched the number of MS-HBM parcels accordingly for each participant. Results for dMS-HBM and
cMS-HBM are shown in Supplementary Figure S10.

Both P values remained significant after correcting for multiple
comparisons with FDR q < 0.05. Compared with cMS-HBM
and dMS-HBM, gMS-HBM achieved an improvement of 5.5%
and 3.4%, respectively. However, differences among MS-HBM
variants were not significant.

We note that some behavioral measures were predicted
poorly by all approaches. This is not unexpected because we do
not expect all behavioral measures to be predictable with RSFC.
Therefore, we further consider a subset of behavioral measures
that could be predicted well by at least one approach. Figure 9B
shows the average prediction accuracies of 36 behaviors with
accuracies higher than 0.1 for at least one approach (“36
behaviors >0.1”). Compared with Schaefer2018 and Li2019,

gMS-HBM achieved improvements of 13% (P = 2.2e−4) and 13%
(P = 4.5e−4), respectively. All P values remained significant
after correcting for multiple comparisons with FDR q < 0.05.
Differences among MS-HBM variants were again not significant.
Similar conclusions were obtained with COD instead of
correlations (Fig. 10 and Supplementary Tables S4 and S5).

Task Performance Measures Are More Predictable Than
Self-Reported Measures

To explore which behavioral measures can be consistently
predicted well regardless of parcellations, we ordered the 58
behavioral measures based on averaged prediction accuracies
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Figure 8. MS-HBM parcellations achieved better task inhomogeneity in the MSC dataset. (A) The 400-region individual-specific parcellations were estimated using
all resting-state fMRI sessions. Task inhomogeneity was evaluated using task fMRI. Task inhomogeneity was then defined as the SD of task activation within each

parcel and then averaged across all parcels and contrasts within each behavioral domain. Lower value indicates better task inhomogeneity. Each circle represents one
MSC participant. Dash lines connect the same participants. (B) Same as (A) except that Laumann2015 yielded different number of parcels for each participant, so we
matched the number of MS-HBM parcels accordingly for each participant. HCP results are shown in Supplementary Figure S11.

Figure 9. MS-HBM achieves the best behavioral prediction performance as measured by Pearson’s correlation. (A) Average prediction accuracies (Pearson’s correlation)
of all 58 behavioral measures. Boxplots utilized default Matlab parameters, that is, box shows median and interquartile range (IQR). Whiskers indicate 1.5 IQR
(not SD). Circle indicates mean. dMS-HBM, cMS-HBM, and gMS-HBM achieved average prediction accuracies of r = 0.1083 ± 0.0031 (mean ± SD), 0.1062 ± 0.0031, and
0.1111 ± 0.0031, respectively. On the other hand, Schaefer2018 and Li2019 achieved average prediction accuracies of r = 0.0960 ± 0.0031 and 0.0944 ± 0.0031, respectively.

(B) Average prediction accuracies (Pearson’s correlation) of 36 behavioral measures with accuracies (Pearson’s correlation) higher than 0.1 for at least one approach (“36
behaviors > 0.1”). dMS-HBM, cMS-HBM, and gMS-HBM achieved average prediction accuracies of r = 0.1630 ± 0.0034 (mean ± SD), 0.1590 ± 0.0035, and 0.1656 ± 0.0036,
respectively. On the other hand, Schaefer2018 and Li2019 achieved average prediction accuracies of r = 0.1442 ± 0.0036 and 0.1444 ± 0.0035, respectively.

(Pearson’s correlation) across Schaefer2018, Li2019, and the three
MS-HBM variants (Fig. 11B). Our previous studies (Liégeois et al.
2019; Li, Kong, et al. 2019a) have suggested that “self-reported”
and “task performance” measures might be differentially

predicted under different conditions. Using the same classi-
fication of behavioral measures (Liégeois et al. 2019; Li, Kong,
et al. 2019a), we found that the average prediction accuracies of
self-reported measures and task performance measures were
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Figure 10. MS-HBM achieves the best behavioral prediction performance as measured by COD. (A) Average prediction accuracies (COD) of all 58 behavioral measures.
Boxplots utilized default Matlab parameters, that is, box shows median and interquartile range (IQR). Whiskers indicate 1.5 IQR (not SD). Circle indicates mean. dMS-
HBM, cMS-HBM, and gMS-HBM achieved average prediction accuracies (COD) = 0.0147 ± 0.0009 (mean ± SD), 0.0149 ± 0.0009, and 0.0156 ± 0.0010, respectively. On the
other hand, Schaefer2018 and Li2019 achieved average prediction accuracies (COD) = 0.0120 ± 0.0009 and 0.0121 ± 0.0009, respectively. (B) Average prediction accuracies

(COD) of 36 behavioral measures with accuracies (Pearson’s correlation) greater than 0.1 for at least one approach (“36 behaviors > 0.1”). dMS-HBM, cMS-HBM, and gMS-
HBM achieved average prediction accuracies (COD) = 0.0252 ± 0.0014 (mean ± SD), 0.0257 ± 0.0014, and 0.0266 ± 0.0014, respectively. On the other hand, Schaefer2018 and
Li2019 achieved average prediction accuracies (COD) = 0.0212 ± 0.0014 and 0.0213 ± 0.0014, respectively.

r = 0.0890 ± 0.0048 and r = 0.1181 ± 0.0033, respectively (Fig. 11A),
suggesting that on average, task performance measures were
more predictable than self-reported measures (P = 0.042).

Discussion
In this manuscript, we demonstrated the robustness of the
MS-HBM areal-level parcellation approach. Compared with a
group-level parcellation and two state-of-the-art individual-
specific areal-level parcellation approaches, we found that MS-
HBM parcels were more homogeneous during resting-state
while also exhibiting more uniform task activation patterns
(i.e., lower task inhomogeneity). Furthermore, RSFC derived
from individual-specific MS-HBM parcellations achieved better
behavioral prediction performance than other approaches.
Among the three MS-HBM variants, the cMS-HBM exhibited
the best resting homogeneity and task inhomogeneity, while the
gMS-HBM exhibited the best behavioral prediction performance.

Interpretation of the MS-HBM Areal-Level Parcellations

Previous studies have estimated around 300–400 classically
defined cortical areas in the human cerebral cortex (Van Essen,
Glasser, et al. 2012b). Therefore, various groups (including ours)
have most frequently utilized the 400-region Schaefer group-
level parcellation (Varikuti et al. 2018; Franzmeier et al. 2019;
Kebets et al. 2019; Murphy et al. 2020; Orban et al. 2020). Other
studies have opted to utilize different resolutions of the Schaefer
group-level parcellation, for example, 100 regions (Chin Fatt
et al. 2019), 200 regions (Anderson et al. 2020; Faskowitz et al.
2020), and 800 regions (Valk et al. 2020). Despite our focus on the
400-region areal-level parcellations in the current study, we do
not believe that there is an optimal number of cortical parcels

because of the multi-resolution organization of the cerebral
cortex (Churchland and Sejnowski 1988; van den Heuvel and
Yeo 2017). Indeed, given the heterogeneity of cortical areas (Kaas
1987; Amunts and Zilles 2015), cortical areas might be further
subdivided into meaningful computational subunits.

More specifically and consistent with other studies, our
areal-level parcels likely captured subareal features such as
somatotopy and visual eccentricity (Gordon et al. 2016; Schaefer
et al. 2018). Ultimately, the choice of parcellation resolution
might depend on the specific application. For example, a recent
study suggested that brain–behavior relationships are scale-
dependent (Betzel et al. 2019). Furthermore, a higher resolution
parcellation might be computationally infeasible for certain
analysis, such as edge-centric network analysis (Faskowitz et al.
2020). Therefore, we have provided trained MS-HBM at different
spatial resolutions, ranging from 100 to 1000 parcels. It is worth
noting that because our parcels do not correspond to traditional
cortical areas (Kaas 1987; Amunts and Zilles 2015), we have been
careful to avoid the term “areas.” Instead we use the term “areal-
level parcellation” when referring to the entire parcellation and
“parcels” when referring to individual regions throughout the
manuscript.

Several studies have shown that brain networks reconfigure
during tasks (Cole et al. 2014; Krienen et al. 2014; Salehi et al.
2019). Consequently, some have questioned the existence of a
single individual-specific areal-level parcellation that general-
izes across resting and task states (Salehi et al. 2019). While we
do not contest the results of Salehi and colleagues, we have a
very different interpretation. Cortical areas (e.g., V1) are concep-
tualized as representing stable computational units (Felleman
and Van Essen 1991). Consequently, their boundaries should
remain the same regardless of transient task states across the
span of a few days, even if long-term experiences can potentially
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Figure 11. Task performance measures were predicted better than self-reported measures across different parcellation approaches. Prediction accuracies were averaged
across all parcellation approaches (three MS-HBM variants, Schaefer2018, and Li2019). (A) Prediction accuracies averaged across HCP task-performance measures (gray)

and HCP self-reported measures (white). (B) Behavioral measures were ordered based on average prediction accuracies. Gray color indicates task performance measures.
White color indicates self-reported measures. Boxplots utilized default Matlab parameters, that is, box shows median and interquartile range (IQR). Whiskers indicate
1.5 IQR (not SD). Circle indicates mean. Designation of behavioral measures into “self-reported” and “task-performance” measures followed previous studies (Liégeois
et al. 2019; Li et al. 2019a).
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shape the development and formation of cortical areas (Arcaro
et al. 2017; Gomez et al. 2019). Thus, the results of Salehi and
colleagues do not rule out the plausibility of estimating a stable
individual-level areal-level parcellation with rs-fMRI data alone.
Rather, Salehi and colleagues motivate the need to estimate
areal-level parcellations jointly from rs-fMRI, task-fMRI, and
other modalities (Glasser et al. 2016; Eickhoff, Constable, et al.
2018a) in order to achieve invariance across brain states. We
leave this for future work.

MS-HBM Areal-Level Parcellations Are More
Homogeneous Than Other Approaches in
Out-of-Sample Resting- and Task-fMRI

Dealing with RSFC matrices at the original voxel or vertex resolu-
tion is difficult because of the high-dimensionality. Thus, areal-
level brain parcellations have been widely utilized as a dimen-
sionality reduction tool (Eickhoff, Constable, et al. 2018a), for
example, averaged time course of a parcel is used to represent
the entire parcel (Varoquaux and Craddock 2013; Finn et al. 2015;
Rosenberg et al. 2016). For the dimensionality reduction to be
valid, vertices within each areal-level parcel should have similar
time courses, that is, high resting-state homogeneity (Gordon
et al. 2016; Schaefer et al. 2018). Across two datasets (HCP and
MSC), we found that MS-HBM areal-level parcellations exhibited
higher resting-state homogeneity than three other approaches,
suggesting that rs-fMRI time courses are more similar within
MS-HBM parcels (Figs 6 and 7).

Furthermore, if an individual-specific areal-level parcellation
accurately captures the functional brain organization of a par-
ticipant, one might expect task activation to be uniform within
parcels, that is, low task inhomogeneity (Gordon, Laumann,
Gilmore, et al. 2017b; Schaefer et al. 2018). We found that MS-
HBM parcellations achieved better task inhomogeneity than
other approaches in both HCP and MSC datasets (Fig. 8 and
Supplementary Fig. S11). Given the strong link between task-
fMRI and rs-fMRI (Smith et al. 2009; Mennes et al. 2010; Cole et al.
2014; Krienen et al. 2014; Bertolero et al. 2015; Yeo et al. 2015;
Tavor et al. 2016), this is perhaps not surprising.

Intriguingly, the improvement in task inhomogeneity varied
significantly across task domains (Fig. 8 and Supplementary Fig.
S11) with the motor task exhibiting the least task inhomogeneity
improvement for both HCP and MSC datasets. Given that the
motor domain exhibited one of the lowest task inhomogeneity
across behavioral domains, there might not be much room
for improvement. Furthermore, sensory-motor parcels exhib-
ited low intra-subject variation in terms of location and spatial
topography (Fig. 4B), so different approaches might perform sim-
ilarly well. Other possible reasons might include variation in task
design and duration.

It is worth pointing out that even though MSC dataset only
contained nine participants, MS-HBM parcellations exhibited
better resting homogeneity and task inhomogeneity in every
single participant (Figs 6–8 and Supplementary Figures S9–S11).
This suggests that MS-HBM parameters estimated from HCP
were effective in MSC despite significant acquisition and pre-
processing differences.

MS-HBM Works Well Even with Only 10 min of rs-fMRI
Data

It is well known that longer scan durations can improve the
reliability of RSFC measures (Van Dijk et al. 2010; Xu et al. 2016;

Kong et al. 2019). Recent studies have suggested that at least
20–30 min of data is needed to obtain reliable measurements
(Laumann et al. 2015; O’Connor et al. 2017; Gordon, Laumann,
Gilmore, et al. 2017b). Consistent with previous work, we found
that resting-state homogeneity of individual-specific areal-level
parcellations continued to improve with more data (Fig. 7 and
Supplementary Fig. S10). The improvements started to plateau
around 40–50 min of data.

Although MS-HBM required multi-session rs-fMRI data for
training, the models could be applied to a single rs-fMRI ses-
sion from a new dataset. More specifically, in the MSC dataset,
we showed that MS-HBM areal-level parcellations estimated
with only 10 min of rs-fMRI data exhibited better resting-state
homogeneity than two other approaches using 150 min of data
(Gordon, Laumann, Gilmore, et al. 2017b; Li, Wang, et al. 2019b).

RSFC of Individual-Specific MS-HBM Parcellations
Improves Behavioral Prediction

A vast body of literature has shown that functional connectiv-
ity derived from group-level parcellations can be utilized for
behavioral prediction (Hampson et al. 2006; Finn et al. 2015;
Smith et al. 2015; Yeo et al. 2015; Rosenberg et al. 2016; He et al.
2020). However, there is a preponderance of evidence that group-
level parcellations obscure individual-specific topographic fea-
tures (Harrison et al. 2015; Laumann et al. 2015; Langs et al.
2016; Braga and Buckner 2017; Chong et al. 2017; Gordon, Lau-
mann, Adeyemo, et al. 2017a, Gordon, Laumann, Gilmore, 2017b),
which are behaviorally meaningful (Bijsterbosch et al. 2018, 2019;
Kong et al. 2019; Seitzman et al. 2019). Recent studies have also
suggested that functional connectivity strength derived from
individual-specific parcellations might also improve behavioral
prediction (Pervaiz et al. 2019; Li, Wang, et al. 2019b).

We found that MS-HBM parcellations captured individual-
specific features that were replicable across sessions (Fig. 5
and Supplementary Figs S2–S7). Furthermore, RSFC derived
from individual-specific MS-HBM areal-level parcellations
achieved better behavioral prediction performance compared
with a group-level parcellation (Schaefer et al. 2018) and a
recently published individual-specific parcellation approach (Li,
Wang, et al. 2019b). Overall, our results suggest that individual
differences in functional connectivity strength of MS-HBM
parcels were more behaviorally meaningful than of other
parcellation approaches.

It is worth noting that the absolute improvement in pre-
diction performance was modest on average, although some
behavioral measures appeared to benefit more than others. For
example, when comparing Li2019 and gMS-HBM for behavioral
prediction, the prediction accuracy (Pearson’s correlation) of
“openness (NEO)” improved from 0.19 to 0.26, while the accu-
racy (Pearson’s correlation) of “vocabulary (picture matching)”
improved from 0.36 to 0.39. Thus, gMS-HBM might be more
helpful for predicting certain behavioral measures than others.

Further analysis suggested that task performance measures
were on average predicted with higher accuracy than self-
reported measures (Fig. 11). This differentiation between task
performance and self-reported measures was consistent with
previous investigations of RSFC–behavior relationships. For
example, RSFC has been shown to predict cognition better
than personality and mental health (Dubois et al. 2018; Chen
et al. 2020). Dynamic functional connectivity is also more
strongly associated with cognition and task performance than
self-reported measures (Vidaurre et al. 2017; Liégeois et al.
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2019). Finally, regressing the global signal has been shown to
improve the prediction of task performance measures more
than self-reported measures (Li, Kong, et al. 2019a).

Spatially Localized Individual-Specific Areal-Level
Parcels

Postmortem studies have generally identified cortical areas that
are spatially contiguous (Kaas 1987; Felleman and Van Essen
1991; Amunts and Zilles 2015). This has motivated most resting-
state areal-level parcellations to estimate spatially contiguous
parcels (Shen et al. 2013; Honnorat et al. 2015; Gordon et al. 2016;
Chong et al. 2017). One approach to achieve spatially contiguous
parcels is to introduce a spatial connectedness term into the
optimization objective so that distributed parcels would have
large penalty (Honnorat et al. 2015; Schaefer et al. 2018). Another
approach is to start with initial spatially contiguous parcels and
to iteratively adjust the boundaries to maintain spatial contigu-
ity (Blumensath et al. 2012; Chong et al. 2017; Salehi et al. 2019).
Yet another method is to utilize the local-gradient approach,
which detects sharp transitions in RSFC profiles, followed by a
postprocessing procedure (Cohen et al. 2008; Gordon et al. 2016).
However, work from Glasser et al. (2016) suggested that some
individual-specific areal-level parcels might comprise multiple
spatially close components in some individuals.

Given the lack of consensus, we explored three MS-HBM vari-
ants in this study. We found that strictly contiguous cMS-HBM
parcels achieved the best out-of-sample resting-state homo-
geneity and task inhomogeneity (Figs 6–8 and Supplementary
Figs S8–S10). One possible reason is that cMS-HBM parcellation
boundaries were smoother than dMS-HBM and gMS-HBM par-
cellations. Since fMRI data are spatially smooth, parcellations
with smoother boundaries might have an inherent homogeneity
advantage, without necessarily being better at capturing true
areal boundaries. Another potential artifact of smooth data is
the appearance of excessively round parcels that are at odds
with histological studies, which show that cortical areas express
diverse spatial configurations.

Based on our geometric analyses, we found gMS-HBM to
be most anatomically plausible among the three parcellations,
having both fewer spatially disconnected components than
dMS-HBM, and intermediate levels of roundness between
dMS-HBM and cMS-HBM. Furthermore, RSFC derived from
gMS-HBM parcels achieved the best behavioral prediction
performance, albeit not reaching statistical significance (Fig. 9
and Supplementary Figure S11; Supplementary Tables S2–S5).
As elaborated in previous studies (Gordon et al. 2016; Schaefer
et al. 2018; Kong et al. 2019), assessment of parcellations should
integrate and weigh performance across multiple metrics.
For the reasons outlined above, we prefer individual-specific
gMS-HBM areal-level parcellations among the three MS-HBM
variants.

Overall, our findings suggest that the brain’s large-scale orga-
nization might potentially comprise certain functional regions
that are spatially disconnected. Neuronal migration, guided by
cell-to-cell interactions and gradients of diffusible cues, plays
an important role in establishing the brain’s complex cytoarchi-
tectonic organization during embryogenesis (Silva et al. 2019).
Spatially disconnected parcels might reflect functionally analo-
gous neuronal populations from the same cellular lineage that
separate due to natural variation in migration patterns in early
development.

That said, we are aware that one cannot establish with cer-
tainty the existence of spatially disconnected cortical areas
based on resting-fMRI data alone. It is possible that discon-
nected components of a noncontiguous parcel are inseparable
by resting-fMRI measurements but are separable by other neural
properties, such as microstructure or task activations. Given that
fMRI is an indirect measurement of neuronal signals, the func-
tional coupling among disconnected components could also be
driven by non-neural mechanisms (e.g., vasculature).

Nevertheless, our individual-level areal parcellation provides
an explicit model that can be further validated using prospec-
tively acquired rs-fMRI paired with other approaches, for exam-
ple, post-mortem histological analyses (Xu et al. 2018; Hayashi
et al. 2020) or with spatially targeted intracranial recording
(Wang et al. 2015; Fox et al. 2018).

Conclusions
We proposed a MS-HBM that accounted for both intra-subject
and intra-subject functional connectivity variability when
estimating individual-specific areal-level parcellations. Three
MS-HBM variants with different spatial localization priors
were explored. Using 10 min of rs-fMRI data, individual-
specific MS-HBM areal-level parcellations generalized better
to out-of-sample rs-fMRI data from the same participants
than a group-level parcellation approach and two prominent
individual-specific areal-level parcellation approaches using
150 min of rs-fMRI data. Furthermore, RSFC derived from
MS-HBM parcellations exhibited better behavioral prediction
performance than alternative parcellation approaches.
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