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Abstract

The neural mechanisms contributing to flexible cognition and behavior and how they change with development and aging

are incompletely understood. The current study explored intrinsic brain dynamics across the lifespan using resting-state

fMRI data (n= 601, 6–85 years) and examined the interactions between age and brain dynamics among three neurocognitive

networks (midcingulo-insular network, M-CIN; medial frontoparietal network, M-FPN; and lateral frontoparietal network,

L-FPN) in relation to behavioral measures of cognitive flexibility. Hierarchical multiple regression analysis revealed brain

dynamics among a brain state characterized by co-activation of the L-FPN and M-FPN, and brain state transitions,

moderated the relationship between quadratic effects of age and cognitive flexibility as measured by scores on the

Delis-Kaplan Executive Function System (D-KEFS) test. Furthermore, simple slope analyses of significant interactions

revealed children and older adults were more likely to exhibit brain dynamic patterns associated with poorer cognitive

flexibility compared with younger adults. Our findings link changes in cognitive flexibility observed with age with the

underlying brain dynamics supporting these changes. Preventative and intervention measures should prioritize targeting

these networks with cognitive flexibility training to promote optimal outcomes across the lifespan.
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Introduction

Flexible brain dynamics support cognition and behavior (Grady

and Garrett 2014; Jia et al. 2014). However, little is known regard-

ing brain dynamic changes across the lifespan associated with

cognitive flexibility, a component of executive function (Dia-

mond 2013) that supports the ability to adapt behavior to an

ever-changing environment (Dajani and Uddin 2015). Cognitive

flexibility is associated with positive academic, occupational,

and social outcomes throughout life (Davis et al. 2010; Genet

and Siemer 2011; Burt and Paysnick 2012; Yeniad et al. 2013;

Colé et al. 2014). Understanding age-related changes in brain

dynamics and their relationship with cognitive flexibility is

crucial to identifying neuralmarkers of risk and resilience across

development and aging.

Across the lifespan, greater dynamic brain flexibility is

increasingly being associated with younger adulthood and
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enhanced cognitive performance (Jia et al. 2014; Braun et al.

2015; Nomi et al. 2017a; Xia et al. 2019; Battaglia et al. 2020).

A greater number of transitions among certain brain states

has been found in younger adults compared with older adults

(Xia et al. 2019) and children (Hutchison and Morton 2015).

The dwell time, or the time spent within a brain state, has

also been shown to differ across age, with shorter dwell times

in certain states in young adulthood (Hutchison and Morton

2015) potentially underlying efficient cognitive control. Dwell

time increases with older age (Xia et al. 2019), potentially

underlying cognitive changes and reduced cognitive efficiency

(i.e., perseveration) (Ridderinkhof et al. 2002). Lastly, the

frequency of occurrence of highly variable brain states has

also been associated with better performance on behavioral

measures of executive function including cognitive flexibility

(Nomi et al. 2017b). Although greater dynamic brain flexibility is

increasingly being associated with younger age and enhanced

cognitive performance, there is little known about variability in

brain dynamics supporting cognition across age. For example,

growing evidence suggests individuals have varying “brain ages,”

resulting in differences in functional brain maturity among

age-matched individuals (Dosenbach et al. 2010). Therefore,

age-related changes associated with brain network dynamic

variability and cognitive flexibility require further investigation

(Cohen 2018) as they may provide potential markers of risk

for, and resilience to, age-related cognitive decline across the

lifespan.

Within and between network connectivity among the

midcingulo-insular network (M-CIN; also known as salience),

medial frontoparietal network (M-FPN; also known as default),

and lateral frontoparietal network (L-FPN; also known as

executive control) (Uddin et al. 2019) has also been shown to

be important for aging (Ryali et al. 2016; Chand et al. 2017), and

cognitive and neural flexibility (Uddin et al. 2011; Chen et al.

2016). The M-CIN is involved in interoceptive, affective, atten-

tion, and control processes associated with subjective salience;

the L-PFN is involved in executive control and modulating goal-

oriented behaviors and decisions; and the M-FPN is involved in

self-related processes and social cognition (Uddin et al. 2019).

Together, these networks support various functions important

for adaptation across the lifespan (Masten and Obradovic 2006;

Touroutoglou et al. 2018). A longer dwell time within certain

states of the M-CIN, M-FPN, and L-FPN has been associated with

less flexibility in children’s brain dynamic repertoires compared

with young adults (Ryali et al. 2016). Greater flexibility within

these networks may therefore account for improved behavioral

performance across development. In older age, extant literature

suggests weaker modulation occurs among the M-FPN and L-

FPN, resulting in the greater reliance on crystallized knowledge,

and weaker fluency skills (Turner and Nathan Spreng 2015;

Spreng et al. 2018). Furthermore, temporal variability specifically

of the M-CIN has been shown to uniquely predict individual

differences in cognitive flexibility in young adults (Chen et al.

2016). Conversely, higher M-FPN and L-FPN functional dynamics

during the resting-state have been associatedwith poorer cogni-

tive flexibility (Douw et al. 2016). Overall, dynamic relationships

among the M-CIN, M-FPN, and L-FPN appear to be important

contributors to cognitive flexibility across the lifespan.

Despite its importance to optimal lifespan development, no

previous studies have characterized brain network dynamics

supporting cognitive flexibility from childhood to older adult-

hood. This study provides a novel framework for understand-

ing the relationship between brain dynamics and cognitive

Table 1 Participant Demographics

N=601; mean± sd (min—max)

Age (year) 37.22±20.73 (6.18–85.62)

Gender 239 M 361 F 1 NR

Mean FD (mm) 0.25±0.09 (0.08–0.50)

Ethnicity 514 (not Hispanic or Latino) 86

(Hispanic or Latino) 1 NR

Race 4 (1) 46 (2) 116 (3) 1 (4) 417 (5) 16 (6)

1(NR)

CWIT inhibition/switching

total completion time

62.80±17.89 (32–146)

CWIT inhibition/switching

total errors

1.92±2.24 (0–22)

TMT number-letter switching

total completion time

81.70±38.79 (25–240)

VF switching total correct 13.49±3.20 (4–23)

Note: SD, standard deviation; M, male; F, female; NR: no response; 1: American
Indian or Native Alaskan; 2: Asian; 3: Black or African American; 4: Native
Hawaiian or Other Pacific Islander; 5: White; 6: Other Race; CWIT, Color-Word
Interference Test; TMT, Trail Making Test; VF, Verbal Fluency.

flexibility and may lend insight into neuropsychiatric disorders

and resilience in typical development and aging. Previous

studies have found both linear and quadratic relationships

across the lifespan related to cognitive flexibility and brain

dynamics when examining within- and between-network

associations (Grady et al. 2006;Wang et al. 2012; Betzel et al. 2014;

Cao et al. 2014; Nomi et al. 2017a). To extend previous findings,

we examined the hypotheses that between-network dynamics

among the M-CIN, M-FPN, and L-FPN exhibit a quadratic

trajectory across the lifespan. To examine if varying levels of

brain dynamics supports optimal cognitive flexibility across

the lifespan, we also tested the hypothesis that brain dynamics

among these three large-scale networks interact with age to

enable cognitive flexibility changes associated with healthy

aging. Specifically, we hypothesized that greater brain dynamic

flexibility as indexed by dwell time, frequency of occurrence,

and transitions between states would be associated with greater

cognitive flexibility across the lifespan.

Methods

Neuroimaging, phenotypic, and behavioral data collected from

601 healthy adult participants were downloaded from the

Enhanced Nathan Kline Institute.

(NKI)-dataset (http://fcon_1000.projects.nitrc.org/indi/enha

nced/). Participants were selected according to the following

inclusion criteria: 1) availability of neuroimaging and behavioral

data, 2) no current or past DSM-diagnosis for psychiatric

disorders and/or attention deficit hyperactivity disorder, and

(3) resting-state fMRI data head motion <0.5 mm. See Table 1

for participant information and Supplementary Figure S1 for

information about the age distribution included in this study.

The study was approved by the NKI institutional review board

and all participants provided informed consent.Written consent

and assent was collected from child participants and their legal

guardian (Nooner et al. 2012)

MRI and Behavior Protocol

Participants were assessed during a 1- or 2-day examination by

trained experts. Details of the MRI and behavioral assessment

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhab156/6304413 by  nathan.spreng@

m
cgill.ca on 20 June 2021

http://fcon_1000.projects.nitrc.org/indi/enhanced/
http://fcon_1000.projects.nitrc.org/indi/enhanced/
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab156#supplementary-data


Lifespan Brain Dynamics and Cognitive Flexibility Kupis et al. 3

procedures can be found at http://fcon_1000.projects.nitrc.org/i

ndi/enhanced/mri_protocol.html, and http://fcon_1000.projects.

nitrc.org/indi/enhanced/assessments.html, respectively. Some

participants were missing behavioral data for certain measures

and were omitted when necessary. Additionally, children below

the age of 8 years (n=7) were not administered the executive

function tests, as the test battery is only valid in 8–89 year

olds (Delis et al. 2001). These children were excluded from the

analyses with behavioral measures of executive function.

Cognitive Flexibility Measures

Participants were administered the Delis-Kaplan Executive

Function System (D-KEFS), a series of neuropsychological tests

designed to measure executive functions in children and adults

between the ages of 8–89 (Delis et al. 2001). The commonly used

cognitive flexibility tests within the D-KEFS include the Color-

Word Interference Task (CWIT), the Trail Making Test (TMT), and

the Verbal Fluency (VF) Task.

The CWIT is amodified Stroop task (Stroop and Ridley Stroop

1992) and consists of four conditions. The first two conditions

are similar to the Stroop interference task, and the last condition

involves Inhibition/Switching and is a commonly used cognitive

flexibility task (Bohnen et al. 1992; Mattson et al. 1999). In the

Inhibition/Switching condition, participants are presented with

a page containing the words “red,” “green,” and “blue,” written

in red, green, or blue ink. Some of the words are contained in

a box and the subject must switch between saying the color

of the ink (word is not inside a box) or the color of the word

(word inside a box). Participants are told to complete the task as

quickly as possible. Raw scores include the time to complete the

Inhibition/Switching condition in seconds and the total number

of errors made during the task. Higher scores indicate poorer

cognitive flexibility.

The TMT was created to isolate set-shifting abilities by

including baseline conditions such as visual scanning, number

sequencing, letter sequencing and motor speed (Fine et al.

2011). TMT also includes a Number-Letter Switching condition, a

commonly used cognitive flexibility task (Kleinhans et al. 2005;

Mcdonald et al. 2005; Yochim et al. 2007). During the Number-

Letter Switching condition, participants switch back and forth

between connecting numbers and letters (i.e., 1, A, 2, B etc.,)

(Yochim et al. 2007). They are instructed to connect the numbers

and letters as quickly as possible. The raw score measure for

the Number-Letter Switching task is the total time to complete

the task in seconds. Higher scores indicate poorer cognitive

flexibility.

The VF test requires participants to generate words begin-

ning with a letter (phonemic fluency) or from a category (cate-

gory fluency). The VF task also includes a Category Switching

condition where participants alternate between saying words

from two different semantic categories. The Category Switching

condition is a commonly used task to study cognitive flexibility

(de Paula et al. 2015; Ramanan et al. 2015). In the switching

condition,participants are told to produce asmanywordswithin

60 seconds. The VF category switching raw score is the total

correct number of responses and a higher score indicates better

cognitive flexibility.

MRI Data Acquisition

A Siemens Trio 3.0 T scanner was used to obtain the func-

tional images. Multiband (factor of 4) echo-planarimage

(EPI) sequenced resting-state images (rsfMRI; TR=1400 ms,

TE=30 ms, flip angle 65◦, field of view (FOV) 224 mm, voxel

size= 2x2x2 mm, 64 interleaved slices, 404 volumes) were

applied for the acquisition of the functional images. Participants

were instructed to keep their eyes open and fixate on a cross in

the center of the screen during the 9-min 19-s rsfMRI scan. For

detailed MRI protocol see: http://fcon_1000.projects.nitrc.org/i

ndi/enhanced/mri_protocol.html.

Neuroimaging Data Preprocessing and Postprocessing

The resting-state fMRI data were preprocessed using the Data

Preprocessing Assistant for Resting-State fMRI Advanced edition

(DPARSF-A,Yan andZang, 2016),which uses FSL,SPM-12 (https://

www.fil.ion.ucl.ac.uk/spm/software/spm12/), and AFNI https://a

fni.nimh.nih.gov (Cox 1996). The preprocessing steps were the

following: removal of the first 5 volumes to allow scanner signal

to reach equilibrium, despiked using AFNI 3dDespike, realign-

ment, normalization to 3 mm MNI template, and smoothing

(6 mm FWHM) (Espinoza et al. 2019).

Independent component analysis (ICA) was conducted using

FSL’s MELODIC by means of automatic dimensionality estima-

tion (Nomi et al. 2017a; Espinoza et al. 2019). The ICA-FIX clas-

sifier was trained on hand-classified independent components

separated into noise and non-noise categories using randomly

chosen participants (n=24) across the lifespan (Griffanti et al.

2014; Nomi et al. 2017b). The ICA-FIX classification algorithm

was applied to the data (FSL’s ICA-FIX; (Griffanti et al. 2014)

to classify noise and non-noise components from individual

subject data before conducting nuisance regression of classi-

fied noise components from the resting-state scans in MNI

space. The ICA-FIX fMRI data then underwent nuisance covari-

ance regression (linear detrend, Friston 24 motion parameters

(6 motion parameters of each volume, the preceding volume,

and the 12 corresponding squared items) (Friston et al. 1996),

global mean signal, followed by bandpass filtering (0.01–0.10 Hz)

(Damoiseaux et al. 2006). Preprocessing and postprocessingwere

additionally conducted without global mean signal regression

(GSR) to assess the effect of this step on subsequently derived

metrics, as there is yet no consensus regarding the extent to

which this step removes neural signal in addition to noise (Uddin

2020a).

Nine regions-of-interest (ROIs) representing the three large-

scale networks (Uddin et al. 2011) were selected (Table 2), includ-

ing the right and left fronto-insular cortex (rFIC) and anterior

cingulate cortex (ACC) of the M-CIN; right and left dorsolateral

prefrontal cortex (rDLPFC) and right and left posterior parietal

cortex (rPPC) of the L-FPN; and the ventromedial prefrontal cor-

tex (VMPFC) and posterior cingulate cortex (PCC) of the M-FPN.

These networks and regions were chosen because of previous

work demonstrating their functional roles in flexible cognition

(Uddin et al. 2011) and aging (Ryali et al. 2016; Chand et al.

2017). Additionally, these ROIs have long been recognized as

critical nodes in the three neural networks (Seeley et al. 2007;

Menon and Uddin 2010; Chand et al. 2017) and as evidenced

by recent ICA group analyses (Marshall et al. 2020; Kupis et al.

2021). A trained research assistant examined all ROIs in older

participants (≧ 70–85 years), the years where the most marked

changes in brain atrophy can occur (Scahill et al. 2003), to ensure

the masks were within the cerebral cortex for each individual

subject.

Co-Activation Pattern Analysis

For each individual subject, time series extracted from the nine

ROIs were converted to z-statistics and then concatenated into
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Table 2 Coordinates of M-CIN, M-FPN, and L-FPN regions

Network Region BA Peak MNI coordinates (mm)

M-CIN rFIC 47 39, 23, −4

lFIC 47 −34, 20, −8

ACC 24 6, 24, 32

L-FPN rDLPFC 9 46, 20, 44

lDLPFC 9 −46, 20, 44

rPPC 40 52, −52, 50

lPPC 40 −40, −56, 44

M-FPN VMPFC 11 −2, 38, −12

PCC 23/30 −6, −44, 34

one matrix containing all subjects [(399 TR × 601 subjects) × 9

ROIs], following previous studies (Hutchison and Morton 2015;

Kupis et al. 2020). Both children and adults were included due to

prior evidence suggesting the brain’s repertoire of states are gen-

erally preserved across age (Hutchison and Morton 2015). The

matrix was then subjected to k-means clustering to determine

the optimal number of clusters. The elbow criterion was applied

to the cluster validity index (the ratio between within-cluster

to between-cluster distance) for values of k=2–20 to determine

the optimal value of k=5 (Supplementary Figure S2) (Liu et al.

2013).

K-means clustering using a squared Euclidean distance was

then applied to the matrix using the optimal k=5 to produce

5 co-activation pattern (CAP) “brain states.” The CAP metrics

included: a) dwell time, calculated as the average number of

continuous TRs that a participant stayed in a given brain state,

b) frequency of occurrence of brain states, calculated as an

overall percentage that the brain state occurred throughout the

duration of the scan compared with other brain states, and c)

the number of transitions, calculated as the number of switches

between any two brain states.

In the processing pipeline including the data without GSR,

k-means analysis was again conducted to obtain the optimal k,

determined to be k=5.

Statistical Analysis

To test our first hypothesis that the dynamic network integra-

tion among networks important for cognitive flexibility differs

across age, linear and quadratic regressions were conducted

with Age and Age2, predicting the dynamic brain state metric

(dwell time, frequency, and transitions) for each CAP. Covariates

included head motion and sex. Age2 was included due to prior

evidence revealing age has a quadratic or curvilinear relation-

shipwith certain brain regions and networks (DuPre andNathan

Spreng 2017; Chen et al. 2018).Overall, thismodelwas conducted

to extend prior “static” results by using dynamic brain network

states.

Ŷ =B0 +B1(Age)+B2(Age2)+Bn(Covariates).

To test our second hypothesis that brain dynamics moderate

the relationship between age and cognitive flexibility, hierarchi-

cal multiple regressions were conducted. Hierarchical multiple

regression analysis includes adding variables into the model in

separate steps (Francis et al. 1975). In the first step, Age and

Age2 were included as predictors of cognitive flexibility,with sex

and mean FD included as covariates. This tested for quadratic

relationships between age and cognitive flexibility before the

moderation analysis were conducted. In the second step, the

brain dynamic metric (dwell time, frequency, and transitions)

for each CAP was included as a predictor. In the last step,

the interaction between Age and the dynamic metric and the

interaction between Age2 and the dynamicmetric were included

into the regression analysis. Brain dynamics were tested as the

moderator in this study due to the idea that there may be

variability in brain functioning among subjects of the same age

(Dosenbach et al. 2010). This approach supports assessing vari-

ability in brain dynamics associated with cognitive flexibility

across the lifespan, while still revealing age-related changes.

The cognitive flexibility measures used were the CWIT Inhibi-

tion/Switching, the TMT Color/Number Switching, and the VF

Category Switching raw scores. Following significant interac-

tions, the simple slopes were examined to aid interpretation.

Simple slopes were computed to explore the effect of Age2 on

the cognitive flexibility measure at three different levels of the

moderator as represented by the brain dynamic metric (i.e.,

at −1 SD below the mean, at the mean, and at +1 SD above

the mean). All analyses were conducted using R (Computing

and Others 2013) (https://www.R-project.org/) and all analyses

are publicly available (https://github.com/lkupis/lifespan_Dyna

mics). Additional analyses were also conducted with more ROIs

using the Schaefer parcellation (Schaefer et al. 2018), and are

available in the Supplementary Materials.

Ŷ =B0 +B1(Age)+B2(Age2)+Bn(Covariates) [Step 1]

Ŷ =B0 +B1(Age)+B2(Age2)+B3(Brain Dynamic)

+Bn(Covariates) [Step 2]

Ŷ =B0 +B1(Age)+B2(Age2)+B3(Brain Dynamic)

+B1(Age × Brain Dynamic)+B2(Age2 × Brain Dynamic)

+Bn(Covariates) [Step 3]

Results

Recurrent CAP Analysis

Results from the CAP analysis among the M-CIN, L-FPN, and M-

FPN are presented in Figure 1. The first brain state (CAP 1) was

characterized by stronger co-activation among theM-FPN nodes

relative to the L-FPN and M-CIN. The second brain state (CAP

2) was characterized by co-activation among the M-CIN nodes.

The third brain state (CAP 3) was characterized by co-activation

among the M-CIN and the M-FPN. The fourth brain state (CAP 4)

was characterized by co-activation among the L-FPN andM-CIN.

The last brain state (CAP 5) was characterized by co-activation

among the L-FPN and M-FPN.
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CAP Analysis without Global Signal Regression

Results from the CAP analysis using data without GSR are pre-

sented in Supplementary Figure S3. The resulting CAPs revealed

the influence of the global signal, notably in CAPs 1 and 2.

CAP 1 shows all nodes with inactivity and CAP 2 shows all

nodes with activity representing the global signal across all

nodes. Prior work suggests that the decision to remove the

global signal or not depends on the scientific question, and

should be considered when interpreting the results (Murphy

and Fox 2017). The removal of the global signal as a prepro-

cessing step significantly mitigates artifacts from a variety of

sources (Power et al. 2017; Ciric et al. 2018). Although in some

cases the global signal can represent neuronal signal (Hyder and

Rothman 2010; Schölvinck et al. 2010); in the current dataset,

removal of the global signal was beneficial to revealing CAPs

associated with cognition. Therefore, all statistical analyses and

results presented are derived from data that was preprocessed

with GSR.

Associations between Brain Dynamics and Quadratic
Effects of Age

Curvilinear regressions were conducted with Age and Age2 pre-

dicting the brain dynamic metric for each brain state (CAP 1–

5), while controlling for sex and mean FD. There was a posi-

tive quadratic effect of age when predicting the frequency of

CAP 3, characterized by co-activation among the M-CIN and

M-FPN, β = 0.42, b=< 0.001, SE=< 0.001, P=0.030, uncorrected.

CAP 3 occurred less frequently as age increased, but increased

in occurrence with older age (see Fig. 2A). There was also a

negative quadratic effect of age when predicting the frequency

of CAP 5, characterized by co-activation among the L-FPN and

M-FPN, β = −0.40, b=<0.001, SE=<0.001, P=0.037, uncorrected.

CAP 5 occurred more frequently as age increased; however, it

decreased with older age (see Fig. 2B). Lastly, there was a pos-

itive quadratic effect of age predicting the dwell time of CAP

4, characterized by co-activation among the M-CIN and L-FPN,

β = 0.37, b=< 0.001, SE=< 0.001, P=0.053, uncorrected. The dwell

time of CAP 4 decreased with age, and increased with older age

(see Fig. 2C).

Main Effects of age 2 and Brain Dynamics Predicting
Cognitive Flexibility

Age, Age2, and the brain dynamic metric were included in steps

1 and 2 of the hierarchical regression analyses. There were

significant quadratic effects of age for the cognitive flexibil-

ity measures including the CWIT total errors raw score, TMT

completion time raw score, and VF total correct number of

responses raw score (P’s< 0.001), but not for CWIT completion

time raw score (P’s> 0.05). The brain dynamic metrics were not

significant predictors of cognitive flexibility when included into

the regression equations (P’s> 0.05).

Interactions between Age and Brain Dynamics
Predicting Cognitive Flexibility

There were multiple significant interactions between the

dynamic brain states and Age2 predicting cognitive flexibility

(Supplementary Table S1). Only the significant interactions

that survived Bonferroni correction ((.05/10) = 0.005) will be

discussed. The dwell time of CAP 5, characterized by co-

activation among the L-FPN and M-FPN, moderated the

relationship between the quadratic effect of age and cognitive

flexibility (TMT switching completion time), b=0.02, SE=0.01,

P=0.002. Simple slope analyses indicated there was a significant

slope between Age2 and TMT switching completion time at low

(−1 SD), b=0.02, SE=0.01, P=0.003, average, b=0.03, SE=0.004,

P=< 0.001, and high (+1 SD), b=0.04, SE=0.01, P< 0.001 CAP

5 dwell times. A low CAP 5 dwell time was associated with

improved cognitive flexibility across the lifespan; Average CAP

5 dwell time consisted of slightly poorer cognitive flexibility at

young and older ages and improved cognitive flexibilitymid age.

A higher CAP 5 dwell time was associated with poorer cognitive

flexibility at younger and older ages and improved cognitive

flexibility performance during mid-age. Although the simple

slopes were significant at low, average, and high levels of CAP

5 dwell time, examination of the slopes in Figure 3A further

revealed the effect was minimal at a low level (Li 2018). Overall,

the dynamics of a brain state consisting of co-activation among

the L-FPN and M-FPN moderated the relationship between

cognitive flexibility with Age2 (see Fig. 3A).

The number of brain state transitions also moderated the

relationship between the quadratic effect of age and cogni-

tive flexibility for TMT switching completion time, b=−0.001,

SE=< 0.001, P=0.005. Simple slope analyses indicated there was

a significant slope between Age2 and TMT switching comple-

tion time at low (−1 SD), b=0.04, SE=0.01, P=< 0.001, aver-

age, b=0.03, SE=0.004, P=< 0.001, and high (+1 SD), b=0.02,

SE=0.01, P=0.001, transitions. Simple slopes analyses indicated

that greater numbers of transitionswere associatedwith stable/-

good cognitive flexibility throughout the lifespan, with a reduc-

tion in cognitive flexibility around mid-age. In both average

and low transitions, cognitive flexibility was poorer in younger

and older ages, but peaked during mid-age. Overall, transitions

moderated the relationship between cognitive flexibility and

Age2 (see Fig. 3B).

Discussion

Cognitive flexibility is an important executive function enabling

optimal outcomes in academic achievement, transitions into

adulthood, quality of life, and resilience to negative life events

(Uddin 2021). Examining brain dynamic changes across the

lifespan aids the understanding of the neural mechanisms

underlying optimal and flexible cognition (Grady and Garrett

2014) and may inform studies of cognitive (Zhang et al.

2020a) and neuropsychiatric disorders (Rabany et al. 2019;

Uddin 2020b). The large-scale networks known as the M-

CIN (salience), L-FPN (executive), and M-FPN (default), are

thought to be important for flexible cognition (Uddin et al.

2011; Qin et al. 2015) across aging (Chand et al. 2017; Adnan

et al. 2019a). The present study examined brain dynamics

among the M-CIN, L-FPN, and M-FPN as they relate to lifespan

development, and as a moderator between age and cognitive

flexibility.

The present study revealed five recurring CAP (CAPs or

“brain states”) involving the M-CIN, L-FPN, and M-FPN across

the lifespan. Quadratic relationships were observed between

age and the brain dynamic metrics, primarily within hybrid

brain states characterized by between-network coupling.

Furthermore, brain dynamics moderated the relationship

between a quadratic effect of age and cognitive flexibility. We

demonstrate differences in intrinsic brain network dynamics

across aging associated with cognitive flexibility, specifically

within the M-FPN/L-FPN co-activation state (CAP 5), and brain
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Figure 1. Top: CAPs or brain states from dynamic CAP analysis. CAP 1 was characterized by stronger co-activation among the M-FPN nodes relative to the L-FPN and

M-CIN. CAP 2 was characterized by co-activation among the M-CIN nodes. CAP 3 was characterized by co-activation among the M-CIN and the M-FPN. CAP 4 was

characterized by co-activation among the L-FPN and M-CIN. Lastly, CAP 5 was characterized by co-activation among the L-FPN and M-FPN. Bottom: Graphical brain

representation of each CAP as demonstrated by the ROIs. Note: PCC, posterior cingulate cortex; vmPFC, ventromedial prefrontal cortex; lPPC, left posterior parietal

cortex; rPPC, right posterior parietal cortex; lDLPFC, left dorsolateral prefrontal cortex; rDLPFC, right dorsolateral prefrontal cortex; ACC, anterior cingulate cortex; lFIC,

left fronto-insular cortex; rFIC, right fronto-insular cortex.
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Figure 2. Positive and negative quadratic effects of age (years) predicting dynamic brain metrics for specific CAPs. For all graphs, regression coefficients from the

regression lines of quadratic effects of age predicting each dynamic brain state were plotted. Y-axes were z-scored to facilitate interpretation across graphs. For

A and B, a negative value represents lower frequency of occurrence compared with the average, whereas positive values represent greater frequency of occurrence

compared with the average. (A) A positive quadratic relationship among age and CAP 3 frequency of occurrence. CAP 3 occurred frequently during childhood, decreased

in frequency during young adulthood, and increased in frequency again throughout middle- to older adulthood. CAP 3 consisted of co-activation among the M-CIN

(salience) and theM-FPN (default). (B) A negative quadratic relationship among age and CAP 5 frequency of occurrence. CAP 5 occurred less frequently during childhood,

increased in frequency during young- and middle-adulthood, and decreased again in frequency in older adulthood. CAP 5 consisted of co-activation among the L-FPN

(executive) and M-CIN. Lastly, (C) A positive quadratic relationship among age and CAP 4 dwell time. CAP 4 exhibited longer dwell times during childhood, shorter dwell

times during young- and middle-adulthood, and longer dwell times again in older adulthood. CAP 4 consisted of co-activation among the L-FPN and M-FPN. In A, B,

and C, children and older adults had similar brain dynamic patterns for each CAP, whereas young adults had different brain dynamic patterns. For example, in B, CAP

5 occurred less frequently in early childhood and older adulthood, but occurred more frequently in early adulthood.

network transitions. We found that a greater M-FPN/L-FPN

dwell time in children and older adults was associated with

poorer cognitive flexibility. Furthermore, greater brain state

transitions in children and older adults was associated with

better cognitive flexibility, consistent with prior observations

(Grady and Garrett 2014; Battaglia et al. 2020). Mid-adulthood,

however, was associated with different dynamic patterns

associated with optimal cognitive flexibility. This age represents

a change in cognition from greater fluid to semantic abilities

(Park et al. 2001). Our findings suggest children and older

adults are most vulnerable to cognitive flexibility deficits,

however, a “deficit” in children is defined by having worse

cognitive flexibility compared with age-matched peers,with the

potential of improvement in adulthood. Cognitive inflexibility

in children and adults was associated with brain dynamic

alterations among the M-CIN, M-FPN, and L-FPN based on time

spent in the hybrid M-FPN/L-FPN state and variability in state

transitions.

U-Shaped Trajectories of between-Network Dynamics

Previous studies have demonstrated quadratic effects of age

associated with between-network connections (Betzel et al.

2014; Cao et al. 2014). Prior studies are consistent with our

findings of quadratic or U-shaped trajectories in between-

network dynamics among three large-scale brain networks of

the M-CIN, L-FPN, and M-FPN (Chen et al. 2018). We found the

brain state consisting of co-activation of the M-CIN and M-FPN

(CAP 3) decreased in frequency of occurrence during middle

adulthood but increased during both childhood and older

adulthood. Functional connectivity between the M-CIN and M-

FPN has been previously shown to be associated with greater

cognitive control (Jilka et al. 2014), behavioral performance

on cognitive tasks (Putcha et al. 2016), and memory in older

adults (Zhang et al. 2020b). Additionally, there is evidence that

coupling between theM-FPN andM-CINmay be an intermediary

“switchingmechanism”prior to later M-FPN and L-FPN coupling

(Beaty et al. 2016), potentially underlying greater use of semantic

or crystallized knowledge (Spreng and Turner 2019).

Previous work examined M-CIN and M-FPN connections

using static functional connectivity approaches, whereas we

explored the relationship using dynamic or time-varying

methods. Therefore, dynamic interactions between the M-CIN

and M-FPN may be critical to further assess in relation to

previous static functional connectivity findings. Furthermore,

we expand upon previous findings by demonstrating increased
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Figure 3. Brain dynamics moderate the relationship between age and cognitive flexibility: simple slopes. The interactions presented in A and Bwere between Age2 and

the brain dynamic metrics for CAP 5 and brain state transitions; however, they are presented across age (years) for visual purposes. Additionally, the simple slopes for

both interactions are presented to visually determine the effect of age on the cognitive flexibility measure across three different levels of themoderator as represented

by the brain dynamic metric (i.e., −1 SD below the mean, at the mean, and+1 SD above the mean). Additionally, the y-axes were reversed and standardized so better

cognitive flexibility is at higher ends (the top) and poorer cognitive flexibility is at lower ends (the bottom) of the y-axes. (A) The CAP 5 dwell time (DT) moderated

the relationship between Age2 and the TMT Switching condition (total time to complete the task) as represented by the simple slopes. CAP 5 is characterized by co-

activation among the L-FPN (executive control) andM-FPN (default). Children and older adults who spent a longer time in CAP 5 had poorer cognitive flexibility,whereas

younger adults had optimal cognitive flexibility regardless of their CAP 5 brain dynamics. Similar findings were seen at average levels of CAP 5 dwell time. Children

and older adults who spent less time in CAP 5 had optimal cognitive flexibility relative to those with average and greater time spent in CAP 5, whereas younger

adults had poorer, yet still optimal, cognitive flexibility. (B) The number of transitions moderated the relationship between Age2 and the TMT switching condition

(total time to complete the task) as represented by the simple slopes. Children and older adults who had fewer brain state transitions had poorer cognitive flexibility,

whereas younger adults had optimal cognitive flexibility at average and fewer transitions. Similar findings were seen across individuals with average numbers of brain

state transitions. Children and older adults with greater brain state transitions had optimal cognitive flexibility relative to those with average and fewer brain state

transitions, whereas young adults had poorer cognitive flexibility.

dynamic interactions or frequency of occurrence of the M-CIN

and M-FPN state is associated with older age and development.

This may be due to its role as an intermediary switching

mechanism prior to M-FPN and L-FPN connections, which

is greater in older adults (Spreng and Turner 2019). Thus,

M-CIN/M-FPN coupling may occur more frequently prior to

M-FPN/L-FPN coupling. Within- and between-brain network

integration increases with age, therefore, brain network

variability between certain brain networks may be greater in

children due to less integration (Gu et al. 2015; Kundu et al.

2018). Furthermore, connectivity with the M-FPN is important

for brain network development (Dosenbach et al. 2010). Together,

the M-CIN/M-FPN hybrid state exhibits a quadratic trend across

the lifespan, and children and older adults may be more

likely to enter this state prior to engaging other functional

configurations.

Similarly, we found the co-activation between the L-FPN and

M-CIN (CAP 4) decreased in dwell time during middle adult-

hood and increased during childhood and older adulthood. The

effect size for this finding was moderate (β = 0.37) (Schäfer

and Schwarz 2019). Previous work demonstrates the M-CIN may

independently act as a switching mechanism between the M-

FPN and L-FPN (Goulden et al. 2014). In children and older adults,

a longer time was spent in the L-FPN/M-CIN state during a

task-free environment, suggesting the M-CIN related switching

mechanism may not be fully developed in children (Uddin et al.

2011), andmay be “stickier” or less efficient in older adults. Con-

versely,middle-aged-adults dwelled less in this state, potentially

due to having greater brain state transitions and variability than

children and older adults (Grady and Garrett 2014; Ryali et al.

2016; Xia et al. 2019).

Lastly, we found the connection between the L-FPN and M-

FPN decreased in frequency of occurrence during childhood

and older adulthood and increased during middle adulthood.

Although reliance on semantic knowledge and subsequently

greater M-FPN/L-FPN connections is not as prevalent in mid-

adulthood, evidence suggests mid-adulthood is characterized

by the intersection of greater reliance on semantic knowledge

while fluency abilities are still retained (Park et al. 2001; Spreng

and Turner 2019). Therefore, the M-FPN/L-FPN state may still

occur in middle adulthood and may occur more frequently due

to there being more flexible brain dynamics compared with

older adults and children.

Together, our results demonstrate that hybrid between-

network dynamics in certain brain states exhibit quadratic

relationships across age, and may underlie the cognitive

changes observed through development and aging. Our results

are in line with behavioral studies of cognitive flexibility, which

reveal cognitive flexibility takes an inverted U-shaped trend

across the lifespan (Cepeda et al. 2001; Zelazo et al. 2014).

Cognitive flexibility increases throughout childhood and into

adulthood, and declines in older age (Cepeda et al. 2001; Zelazo

et al. 2014). Although the frontoparietal regions are overall

thought to support these changes (Gogtay et al. 2004; Luna

et al. 2010), we extend this prior work by revealing between-

network dynamic coupling among the M-CIN,M-FPN, and L-FPN
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may also facilitate changes associated with cognitive flexibility

across aging.

Brain Dynamics as a Moderator of Age and Cognitive
Flexibility: L-FPN and M-FPN

We examined brain dynamics as amoderator between quadratic

effects of age and cognitive flexibility to directly examine

how brain dynamics among networks impact the relationship

between aging and cognitive flexibility (Dajani and Uddin 2015).

First, the brain state characterized by co-activation among the

L-FPN and M-FPN moderated the relationship between the

quadratic effect of age and cognitive flexibility as measured

by the TMT. This finding was also replicated using more

regions of interest within the M-FPN, L-FPN, and M-CIN (see

Supplementary Materials). Emerging evidence suggests that

greater connectivity between the M-FPN and L-FPN is a central

feature of neurocognitive aging (Spreng and Schacter 2012;

Turner and Nathan Spreng 2015; Spreng et al. 2018; Adnan

et al. 2019a; Adnan et al. 2019b), termed the “default-executive

coupling hypothesis of aging” (DECHA) (Turner and Nathan

Spreng 2015; Spreng et al. 2018). Relatedly, at each end of the

lifespan, behavioral evidence suggests that cognitive flexibility

performance is poorer in both childhood and older adulthood

(Cepeda et al. 2001; Ridderinkhof et al. 2002; Wasylyshyn et al.

2011; Dajani and Uddin 2015).

Consistent with DECHA and behavioral evidence associated

with cognitive flexibility across aging, we show individuals with

greater M-FPN/L-FPN dwell time, or individuals with less mod-

ulation of the M-FPN and L-FPN, perform worse on cognitive

flexibility tasks than older individuals with average or shorter

CAP 5 (M-FPN/L-FPN) dwell time. Although the DECHA model

has primarily been applied to older individuals, we additionally

found evidence that a greater CAP 5 dwell time is associatedwith

cognitive inflexibility during childhood. This may contribute to

the poorer performance on cognitive flexibility tasks observed

during childhood (Dick 2014; Buttelmann and Karbach 2017).

Additionally, previous evidence suggests there is less flexibility

among the M-CIN, M-FPN, and L-FPN during childhood (Ryali

et al. 2016). Our results extend this finding by relating reduced

network flexibility (M-FPN and L-FPN) with reduced cognitive

flexibility. Furthermore, our findings suggest that older adults

are more severely impacted by reduced M-FPN/L-FPN modu-

lation than children. Overall, our findings support the DECHA

model of aging, and extend previous work by revealing M-FPN/L-

FPN coupling is associated with cognitive flexibility during both

childhood and aging.

Furthermore, our results demonstrate different neural pat-

terns associated with cognitive flexibility duringmid-adulthood

compared with older adults and children. This finding suggests

that a greater M-FPN/L-FPN dwell time may be beneficial to

cognitive flexibility duringmid-adulthood. Additionally, average

and reduced M-FPN/L-FPN dwell time during mid-adulthood

were also associated with higher levels of cognitive flexibility.

Mid-adulthood has previously been shown as a turning point of

declining cognitive control and increased reliance on semantic

(crystallized) knowledge (Park et al. 2001). However, there is

evidence that fluid skills are declining yet intact,while semantic

knowledge is increasing, and may actually bolster cognition (Li

et al. 2015; Samanez-Larkin and Knutson 2015). Therefore, mid-

adulthood has been seen as an optimal period for decision-

making (Samanez-Larkin and Knutson 2015; Spreng and Turner

2019) due to the ability to integrate both fluid and semantic

knowledge.Overall, our results reflect this idea and demonstrate

mid-adulthood is associated with optimal cognitive flexibility

that may additionally be aided by semantic knowledge.

Brain Dynamics as a Moderator of Age and Cognitive
Flexibility: Transitions

We found that the number of brain state transitions moder-

ated the relationship between a quadratic effect of age and

cognitive flexibility. This finding was also replicated using addi-

tional regions of interest within the M-FPN, L-FPN, and M-CIN

(see Supplementary Materials). Specifically, a greater number of

brain state transitions was associated with stable or high cog-

nitive flexibility across the lifespan. As expected, average and

lower number of brain state transitions were associated with

poorer cognitive flexibility during childhood and older adult-

hood, consistentwith the literature (Hutchison andMorton 2015;

Xia et al. 2019; Battaglia et al. 2020). Our findings suggest that

the childhood and the older adulthood stages of life are most

vulnerable to reduced brain state transitions associated with

poorer cognitive flexibility compared with mid-adulthood. This

finding has implications for development during both child-

hood and older adulthood. Overall, our findings demonstrate

direct relationships between brain dynamics associated with

age and cognitive flexibility changes across the lifespan (Uddin

2021).

Conclusion

Using CAP analysis, we identified brain states characterized by

between- and within-network connectivity of neural networks

important for cognitive flexibility. We discovered that between-

network dynamics of a state characterized by co-activation

among the M-FPN and L-FPN, and brain state transitions,

moderated the relationship between aging and cognitive

flexibility. Our results reveal dynamic brain mechanisms

contributing to poorer cognitive flexibility in youth and older

individuals. Preventative measures and interventions should

prioritize strategies targeting brain dynamics among the M-CIN,

M-FPN, and L-FPN, and focus on cognitive flexibility training to

promote optimal outcomes across the lifespan.

Supplementary Material

Supplementary material can be found at Cerebral Cortex online.
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