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Abstract Personality neuroscience involves examining rela-
tions between cognitive or behavioral variability and neural
variables like brain structure and function. Such studies have
uncovered a number of fascinating associations but require large
samples, which are expensive to collect. Here, we propose a
system that capitalizes on neuroimaging data commonly collect-
ed for separate purposes and combines it with new behavioral
data to test novel hypotheses. Specifically, we suggest that groups
of researchers compile a database of structural (i.e., anatomical)
and resting-state functional scans produced for other task-based
investigations and pair these datawith contact information for the
participants who contributed the data. This contact information
can then be used to collect additional cognitive, behavioral, or
individual-difference data that are then reassociated with the
neuroimaging data for analysis. This would allow for novel
hypotheses regarding brain–behavior relations to be tested on
the basis of large sample sizes (with adequate statistical power)
for low additional cost. This idea can be implemented at small
scales at single institutions, among a group of collaborating
researchers, or perhaps even within a single lab. It can also be
implemented at a large scale across institutions, although doing
so would entail a number of additional complications.
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Small samples and resultant low statistical power are associ-
ated with a number of inferential problems in all domains of
research, including neuroimaging. Studies with low power
increase the likelihood of inflated effect size estimates within
studies (Yarkoni, 2009; cf. Jennings & Van Horn, 2012), and
using more stringent alpha thresholds in small samples merely
lowers power further, thus exacerbating the problem of inflat-
ed effect sizes, while increasing the frequency of false nega-
tives (Gonzalez-Castillo et al., 2012; Thyreau et al., 2012;
Yarkoni & Braver, 2010). Small samples and inadequate
statistical power also produce an increased proportion of false
positives relative to true positives (Green et al., 2008, Box 1),
increasing the likelihood that falsely positive “statistically
significant” results will enter the literature, even after applying
appropriate statistical thresholds (Button et al., 2013; Pashler
& Harris, 2012). Attaining adequate statistical power is even
more difficult when one is interested in individual differences,
because of the need for larger sample sizes relative to com-
parisons of mean differences, so power issues are especially
important to consider for personality neuroscience. In this
article, we outline how low statistical power is particularly
difficult to overcome for personality neuroscience investiga-
tions and propose a novel database approach that can help to
produce personality neuroscience studies with large samples
for low additional cost.

Personality neuroscience

Personality neuroscience entails the examination of how var-
iability among individuals on cognitive, emotional, motiva-
tional, or behavioral dimensions (e.g., extraversion, intelli-
gence, empathic ability) is related to neural variables. This
approach has uncovered a number of interesting phenomena
based on a variety of neural variables, including the size of
brain structures, functional connectivity between brain re-
gions, and white matter organization. For example, the size
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and structure of different brain regions have been found to
correspond to individual differences in the Big Five personal-
ity traits (DeYoung et al., 2010; Hu et al., 2011; Kapogiannis,
Sutin, Davatzikos, Costa, & Resnick, 2012), empathy and
social cognition (Banissy, Kanai, Walsh, & Rees, 2012;
Holmes et al., 2012; cf. Mills, Lalonde, Clasen, Giedd, &
Blakemore, 2012), self-reported social network size (Bickart,
Wright, Dautoff, Dickerson, & Barrett, 2011), online social
network size (based on Web sites such as Facebook; Kanai,
Bahrami, Roylance, & Rees, 2012), and even perceptual
rivalry for ambiguous drawings (Kanai, Bahrami, & Rees,
2010). Behavioral correlates of individual differences in white
matter integrity have also been discovered, with white matter
differences predicting variability in the discounting of future
rewards (Yu, 2012) and self-reported empathy (Parkinson &
Wheatley, 2012), as well as cognitive performance and
gender differences (DeCarli et al., 1995; Gur et al., 1999).
With respect to resting state functional connectivity, patterns of
connectivity for different regions have been found to differ
between the sexes (Biswal et al., 2010; Kilpatrick, Zald, Pardo,
& Cahill, 2006), correlate with reading performance (Koyama
et al., 2011), and covary with self-reported inner thoughts
(Andrews-Hanna, Reidler, Huang, & Buckner, 2010; Doucet
et al., 2012) and the Big Five personality traits (Adelstein et al.,
2011), to name a few examples. Personality neuroscience stud-
ies have generated a great deal of interest and often appear in
high-impact journals. They are, however, difficult to produce,
because properly examining interindividual variability in a
reliable way requires large sample sizes.

Statistical power for personality neuroscience

There are a number of reasons why large samples are
required to attain adequate statistical power for person-
ality neuroscience studies. Not surprisingly, if you are
interested in the variability that exists between individ-
uals, examining few individuals makes it unlikely that
you are capturing an acceptable portion of the variabil-
ity of interest. Unless one takes steps to maximize the
chances of sampling from the full range of the distribu-
tion—through preselection based on pretesting for ex-
ample—small random samples of the population will be
biased toward the mean and are unlikely to represent
measurements at either tail of the distribution (assuming
a normal distribution). Even after preselecting to achieve
representativeness within the predictor, increased sam-
pling error in small samples can lead to problematic
outliers on the criterion variable. In other words, studies
with small sample sizes often suffer from a restriction
of range and from multivariate outliers, attenuating the
possibility of observing associations and obscuring the
true relationship across the full distribution of scores.

In personality neuroscience, correlational methods such as
regression are employed to study associations between indi-
vidual differences in brain variables and behavior. Unfortu-
nately, correlations are especially vulnerable to the problems
associated with small sample sizes. From a statistical stand-
point, the uncertainty that surrounds any estimate of relation-
ship between two variables is greatly influenced by the num-
ber of individuals examined. Correlations are much more
susceptible to the presence of outliers than are group or
condition means, and so they have larger confidence intervals
given the same sample size. This can be seen in calculations of
statistical power for correlations versus t -tests (Cohen, 1988).
For example, in order to have 80 % power to detect a corre-
lation of .25 using an alpha threshold of .05, one requires 123
participants. The same degree of power to detect an equivalent
effect-size (d = 0.52) for a one-sample t -test, however, re-
quires only 31 participants. (All calculations based on the
PWR package in R created by Stéphane Champely.)

In order to illustrate the importance of sample size for
correlation estimates, consider a correlation (r ) of .25, which
falls in the center of the middle third of all correlations
observed for measures that do not share method (Hemphill,
2003). For a correlation of .25 and a sample size of 20
individuals, the 95 % confidence interval for this association
falls between −.22 and .63.1 In other words, with 20 partici-
pants, one should have very little confidence in whether a
correlation of typical size is positive or negative or whether an
association exists at all. Keep in mind that studies provide
sample-based estimates of population-level effects, with the
confidence we have in these estimates greatly affected by
sample size. It is only when correlations are .45 or higher that
the low end of a 95 % confidence interval falls above 0 (from
.01 to .74) based on 20 participants. Unfortunately, effects
equivalent to a correlation of .45 or higher have historically
been quite rare within psychological and medical research
(Hemphill, 2003; Meyer et al., 2001). In the case of
individual-difference research, the average correlation is esti-
mated to be about .24 (SD = .17, median = .21; Fraley &
Marks, 2007). On the basis of this estimation, a correlation of
.45 is about 1.2 standard deviations above the mean. Put
another way, around 88 % of all correlations fall below this

1 Following the detection of a significant correlation in one’s own data,
the robustness of this association may be evaluated with a bootstrap
resampling procedure (Efron & Tibshirani, 1986, 1993; Lee & Rodgers,
1998). Bootstrapping permits the calculation of confidence intervals that
better estimate population parameters, as compared with the Fisher’s r to
z transformation used in our example, by using one’s own data as a basis
for estimation. These confidence intervals can then be used to evaluate
whether estimates of population correlations are likely to include 0.
Bootstrapping procedures are incorporated into a number of common
statistical packages, including SPSS (IBM Corp.) and MATLAB
(MathWorks, Inc.).
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correlation of .45. As a consequence, nearly 90 % of all true
associations will not be detected when correlations with a
sample size of 20 participants are conducted.

What sample size is needed in order to have adequate
power for a personality neuroscience study? Let’s assume that
the phenomena we are interested in are of the same magnitude
as those typically observed in psychological and medical
research in general. In this case, the average effect size is
equivalent to an r of around .25, or a d of 0.52 (Fraley &
Marks, 2007; Hemphill, 2003; Meyer et al., 2001). For a
correlation of this magnitude, you would need a minimum
of 67 participants in order to have a 95 % confidence interval
that ranges from .01 to .46. Of course, the larger the sample
size, the better off an analysis will be. Statistically speaking, it
would not be at all surprising for the effect size of a particular
phenomenon to fall one half a standard deviation below the
average effect-size (r = .17, d = 0.35; based on the standard
deviations reported by Fraley &Marks, 2007). About 70 % of
all effect-sizes are half a standard deviation below the mean or
greater. Detecting a correlation of this magnitude requires a
sample of at least 150 participants for a correlational analysis
(based on a 95 % confidence interval that does not include 0).
In our opinion, a sample size of 150 participants or greater is
recommended for examining individual differences within
neuroscience, since this affords 95 % confidence in detecting
about 70 % of all effect sizes based on known estimates.

In sum, for personality neuroscience studies to be credible,
they require large sample sizes of at least 150 participants or
more, unless one holds to the assumption that the effects in
personality neuroscience are much larger, on average, than
what has previously been observed for medical or individual-
difference research. This does not seem likely to be the case,
however. For one thing, no compelling reason exists to think
that effect sizes would be larger for personality neuroscience
research, as compared with other forms of biological or
individual-difference research. Additionally, simulation stud-
ies and mathematical analyses have shown that even if only
four causal variables completely determine the value of some
outcome variable, the correlation between any one of those
four variables and the outcome will not be higher than about
.45 (Ahadi & Diener, 1989; Strube, 1991). Given that the
brain is a complex system and variation in many brain pro-
cesses and parameters are likely to have an influence on any
given phenotypic trait or behavior (Zuckerman, 2005), it is
unlikely that as few as four neural variables fully determine
any given trait or behavior. We should therefore expect im-
portant effects to be in a similar range of magnitudes in
neuroimaging research as they are in behavioral research, with
associations greater than .45 a very rare occurrence. Some
may have the impression that larger correlation values are
commonly observed within neuroimaging; this may be be-
cause effect-size estimates are inflated as a result of low
statistical power (Button et al., 2013).

In sum, the problem of attaining adequate statistical power
is especially pronounced for those interested in studying how
the brain relates to interindividual variability in psychological
traits. This is due both to the need to capture an adequate
breadth of variability for the dimensions of interest and to the
need for larger samples to achieve similar levels of power for
correlation analyses, relative to mean comparisons. With large
sample sizes typically comes a high financial cost, placing
sufficiently powered personality neuroscience investigations
out of reach for many researchers. In what follows, we outline
an approach that allows active neuroimagers to produce per-
sonality neuroscience studies with large samples for little
additional cost, by capitalizing upon neuroimaging data col-
lected for other purposes.

Addressing the problem of power in personality
neuroscience

Because the cost of collecting large samples is prohibitive for
most researchers, the obvious solution is for groups of re-
searchers to pool their data (Poldrack, 2012; Yarkoni, Poldrack,
Van Essen, & Wager, 2010). Data sharing and data mining are
clearly advantageous when it comes to the problem of sample
size and statistical power. However, researchers are notoriously
reticent to share their data, for a number of reasons. These
include the concern that after sharing their data, another re-
searcher might reanalyze these data and uncover a novel finding
that the original researcher therefore misses out on reporting.
Another concern is that after data are shared, some other re-
searcher might reanalyze these data and find problems with the
original analysis. Rather than try to combat these concerns, we
propose a different solution that circumvents them.
Neuroimagers routinely collect data in the course of task-
based studies that they are unlikely to reanalyze to test new
hypotheses, and these data are also unlikely to be useful for
questioning published results. These include high-resolution
anatomical scans, scans dedicated to the visualization of white
matter (e.g., diffusion tensor imaging or diffusion-weighted
magnetic resonance imaging [MRI]), and resting-state data
(i.e., blood oxygenation level dependent [BOLD] signal col-
lected while participants are not engaged in a task). Although
these data may provide necessary information specific to an
individual study, on their own they are of somewhat limited
utility. Here, we make the simple yet novel proposition that
these data be paired with additional behavioral data collected at
a later time and outside of the context of the primary study. This
approach could then support new investigations of brain struc-
ture and function that provide insight into individual differences
(DeYoung, 2010; DeYoung & Gray, 2009).

In broad strokes, we propose that researchers produce a
database of anatomical and resting-state scans from various
task-based studies, along with the means to contact the
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participants who contributed these data. In this way, additional
individual-difference data can be collected and paired with
these neuroscience data to examine novel hypotheses. This
simple idea can be implemented at a relatively small scale, such
as within a single lab or across a group of researchers at a single
institution. It could also, however, be implemented at a large
scale across institutions, within an open-access framework. We
begin by discussing the details of a small-scale implementation
with the hopes that disseminating this idea will increase the
frequency of personality neuroscience investigations based on
large samples. We then discuss the potential for a large-scale
implementation of the approach, raising a number of serious
complications that will need to be overcome but also highlight-
ing the advantages of working toward this resource.

Small-scale implementation of a personality neuroscience
database

A small-scale implementation of our database idea can be
undertaken by a group of researchers at a single institution or
by a single lab. Assuming that the former is more likely, the first
step to creating a flexible personality neuroscience database will
be to recruit collaborators who are willing to contribute their
neuroimaging data to the database. When recruiting potential
collaborators, it is important to stress two main points: (1) that
functional data linked to experimental tasks that could be
reanalyzed to the detriment of the original researchers (i.e.,
missing out on a finding or having published results questioned)
will not be contributed and (2) that by participating, they will
gain access to a large data set that would be resource intensive
to compile on their own, providing the opportunity to conduct
new personality neuroscience studies for low additional cost.
Even small groups of only two or three researchers should be
able to accumulate over a hundred scans to populate the data-
base within the first year, enough to begin doing some ade-
quately powered correlational analyses. This estimate will vary
depending on how actively each contributing lab scans partic-
ipants, but if three researchers each scan 30–40 participants per
year, data from approximately 200 participants will accumulate
in the database within 2 years.

Once a group of researchers has committed to the idea of
sharing their structural and resting-state scans, the hardware and
software architecture needed to host such a database securely
will need to be established. For small-scale implementations
where only the contributors will be using the database, there are
a number of possible solutions to this problem. Perhaps the
easiest solution with respect to hardware would be to integrate
the database with an already existing server system hosted by a
university. Many institutions with MRI scanners already have
very secure, climate-controlled, server rooms with multiple
redundancies to prevent data loss. Hosting the shared data using
these facilities should be simple. However, if an institution lacks

such resources, at this scale even a basic Linux server in a
secure room will suffice. As for the software architecture, there
are again numerous solutions available. Since only a few indi-
viduals are using the database, any systematic organization of
the neuroimaging data will suffice. Open-source database infra-
structures for neuroimaging data already exist, such as XNAT
(Marcus, Olsen, Ramaratnam, & Buckner, 2007; see also
PyXNAT, Schwartz et al., 2012). These can help to ensure
standardization and clear organization of data throughout the
database. A data-processing pipeline such as Nipype
(Gorgolewski et al., 2011) and the LONI pipeline (Dinov
et al., 2009) can also be employed to standardize workflow
and analysis. For the purposes of preserving anonymity, an
important element of this database is that the neuroimaging data
and the contact information are stored separately. Storing the
contact and demographic data will require a different database
infrastructure, with numerous potential solutions possible, in-
cluding the open-source REDCap project (Harris et al., 2009).
However, onemust also be able to reassociate the neuroimaging
data and contact information so that new behavioral data can be
connected to the previously collected neuroimaging data. The
easiest way to do this is to generate a unique identification code
that will be connected to both the neuroscience data and the
contact information.

Once the hardware and software infrastructure has been
agreed upon, the next step is to populate the database. Since
every task-based neuroimaging study also entails the collection
of high-resolution anatomical scans, these are the data most
likely to be contributed in the beginning. Collaborating re-
searchers simply transfer a copy of these scans to the database
during the course of their normal research. Serious consider-
ation must be taken to preserve anonymity, with the option of
removing facial information from the anatomical scans through
skull-stripping, blurring, or other means (e.g., the Freesurfer
defacer provided by the Biomedical Informatics Research Net-
work [BIRN]).White matter imaging and resting-state scans are
becoming a part of routine data collection during task-based
studies, and these data may be contributed as well. It is possible,
but not necessary, for collaborating researchers to agree to
collect these data using standardized protocols, with these run
on an ad hoc basis whenever there is unused time in a scanning
session. In this way, participating in the database will not incur
any additional cost by way of additional scan hours, but cur-
rently unused time will go toward contributing more (and
perhaps more diverse forms of) data to the database. Having
the protocols for these additional scans agreed upon,
programmed, and ready to run will make things run more
efficiently. There is currently some debate about the best
techniques for collecting resting-state data that we will not
attempt to resolve here, but some guidelines for collecting this
kind of data have been suggested on the basis of empirical
work (Van Dijk et al., 2010; cf. Handwerker, Roopchansingh,
Gonzalez-Castillo, & Bandettini, 2012; Petridou, Gaudes,
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Dryden, Francis, & Gowland, 2013). With respect to the
imaging of white matter tracts, there is again some debate,
along with reasonable advice, as to how these data should
best be collected and analyzed (e.g., Jones, Knösche, &
Turner, 2013).

In addition to the neuroimaging data, the contact informa-
tion for all participants will have to be collected in order to
make it possible to acquire additional behavioral measure-
ments that can then be paired with the neuroimaging data.
The easiest way to do this is to include a question at the bottom
of consent forms that asks whether participants would be
willing to be contacted in the future for additional studies
(for pay or course credit), followed by a line for their e-mail
address. At many institutions, questions such as this are com-
monly included on all consent forms. However, researchers
should check with their institutional review boards (IRBs) to
ensure that gaining this permission for future contact is in
accordance with institutional policy. It is also important for
participants to actively consent to sharing their anonymized
data with other researchers, including in the consent form an
option for them to indicate their willingness to do so. In
addition to this information, it also makes sense to present a
basic demographics questionnaire for each participant to com-
plete. At the very least, the individual’s name, birthdate, and
gender should be recorded. The identity information (i.e.,
name and birthdate) will then be stored separately from
the data, but linked to it through a unique identifier.
Additional basic demographic questions can always be
included, such as handedness, number of siblings and
birth order, and language abilities. A brief questionnaire
assessing broad personality traits, such as the 44-item
Big Five Inventory (John & Srivastava, 1999), would
also be helpful to include, since these measures provide
good coverage for a wealth of broad behavioral, affec-
tive, and cognitive tendencies (Goldberg, 1990).

After a year or so, even a small group of neuroimagers
should have between 100 and 200 scanned participants who
have agreed to be contacted in the future, with the neuroim-
aging data stored in one database, names and contact infor-
mation stored in a separate database, and a system for associ-
ating the two. At this point, a novel study can be attempted
with the database. As an illustration of how such a study might
be conducted, consider the question of whether the volume of
the medial parietal cortex, one of the brain’s most highly
connected processing hubs (Hagmann et al., 2008), is related
to the ability to solve insight problems (Lockhart, Lamon, &
Gick, 1988).2 In order to examine this hypothesis, an online
survey would be created that asks participants to solve a series

of insight problems (which are characterized by sudden shifts
in cognitive framing that precede awareness of the solution).3

An e-mail would then be sent to everyone who is in the
database asking if they would be willing to complete this
study for monetary remuneration. Ideally, sending this e-
mail to everyone in the database will be an automated process,
using a secure listserv. It is assumed that not everyone will
respond and fill out the survey, but over time the database
should include a large enough number of possible participants
that any request will bemet with a sufficient number of willing
individuals. Researchers interested in collecting informant
reports have found a high response rate for e-mail requests
to complete short surveys, even when no remuneration is
offered (e.g., above 75 %; Vazire, 2006). As well, Amazon’s
Mechanical Turk (mTurk) system has established that many
individuals are willing to do short tasks for small sums; the
current going rate for payment on mTurk is about $6 (US) per
half hour. Moreover, the data that result from services such as
mTurk, and online survey software (e.g., Qualtrics), appear to
be of equivalent quality to those collected in-lab (Buhrmester,
Kwang, & Gosling, 2011; Chuah, Drasgow, & Roberts,
2006), although additional issues, such as data security, need
to be considered (Nosek, Banaji, & Greenwald, 2002). It is
therefore possible that collecting additional data for 150 indi-
viduals who have already contributed high-resolution anatom-
ical scans might cost no more than $900 (or less, if your task
takes less than half an hour to complete). Paying participants
who reply is possible through a number of different means,
including online systems such as PayPal or e-mail money
transfers. Simpler options also exist, such as having partici-
pants provide a mailing address where a check can be sent or
having an office where they can pick up their payment in cash
upon presentation of valid identification.

Once the data have been collected, responses to the survey
regarding insight problem-solving ability will need to be
associated with the corresponding anatomical scans collected
previously. Some online survey services allow for unique
identifiers to be embedded within the survey data (e.g.,
Qualtrics), which could assist with this task. Voxel-based
morphometry (Ashburner & Friston, 2000) can then be
employed to examine whether the proportion of gray matter
in the medial parietal cortex is related to the ability to solve
insight problems. This example illustrates how the kind of
database we are proposing will allow valuable personality
neuroscience research to be conducted using large samples
(and therefore, adequate statistical power), for relatively low

2 In this example, we consider a psychological individual difference, but
themethod can easily be extended to any differences between individuals,
including physiological ones, such as handedness, eyeglass prescription
strength, and height.

3 An example of such a problem is as follows:
A man in a town married 20 women. He and the women are still

alive, and he has had no divorces or annulments. He is not a bigamist
(meaning he is not legally married to more than one woman at once), and
he broke no law. How is that possible?

The solution to this problem is that the man is a priest or justice of
the peace who performed these marriage ceremonies.
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additional cost, while making use of neuroimaging data that
have already been collected for other purposes but are typi-
cally underused. All of the personality neuroscience studies
cited earlier could have been conducted for significantly less
cost using this approach. Lowering the financial bar to per-
form these types of studies with large samples will likely have
a number of positive influences on the field, including (but not
limited to) conducting important replication attempts (Pashler
& Harris, 2012), attenuating the inferential problems associ-
ated with low statistical power (Button et al., 2013) and
maximizing the value of neuroimaging data that are relatively
expensive to collect.

Note that the studies made possible with a database of this
kind are not limited to online tasks. If individuals who con-
tributed the neuroimaging data live in the area and are willing
to come visit a lab, they can easily complete tasks and mea-
surements in person. This might be necessary for studies that
require other forms of physiological measurement (e.g., heart
rate, cortisol levels, skin conductance, gait analyses, more
complex measurement of perception or sensation) or behavior
(e.g., social interaction tasks). Studies also need not be limited
to a single time-point. With such a database, it will be entirely
possible to perform longitudinal studies or randomized control
intervention studies that also incorporate an investigation of
neuroanatomy and functional connectivity. Moreover, it is not
uncommon for an individual to participate in more than one
fMRI study at a particular institution. Keeping track of these
individuals will allow you to examine possible changes in
brain structure and function over time and how these changes
might relate to other experiences (e.g., courses taken at a
university, drug use, media use) or individual differences
(e.g., trait personality). Thus, a growing database will need
to take into account individuals who have been scanned
previously. Asking whether a person has been scanned previ-
ously in the demographics questionnaire should be sufficient
to alert researchers that this individual might already have an
entry in the database.

Even with respect to a small-scale implementation of this
idea, with only a few researchers contributing to and
employing the database, additional issues are likely to arise
as the database continues to grow. First, it will be important to
ensure that potential participants are not bombarded with too
many requests for studies. A possible solution is to include an
algorithm that ensures that participants are not contacted more
than 3 or 4 times a year. A system could also be established in
which participants indicate the frequency with which they are
comfortable being contacted regarding possible study partic-
ipation. Listserv or newsletter services such as JISCMail allow
recipients to opt out of e-mails or choose to receive an aggre-
gate of all messages sent each week or each month (a digest
version). It might also be possible to establish a Web site
where each person who has contributed neuroimaging data
can browse available studies whenever he or she wishes.

These ideas are not mutually exclusive, and one can easily
imagine a combination of any number of these possible solu-
tions being successful. At this scale of implementation, solu-
tions to most problems can be decided upon by the collabo-
rating researchers who may, for example, agree that each
contributing lab pursue only one or two such studies per year
in order to moderate usage.

Large-scale implementation of a personality neuroscience
database

At a small-scale, this database idea is a simple way for small
groups of researchers to produce a flexible resource that
permits adequately-powered personality neuroscience inves-
tigations. The main issues of constructing, maintaining, and
using the database at this scale can be solved in a myriad of
different ways, and it would not be surprising if entirely novel
solutions separate from those mentioned here are employed.
However, it is possible for this database idea to be scaled up to
provide an even greater resource accessible to a large number
of researchers. In this section, we outline what a large-scale
implementation of a flexible personality neuroscience data-
base might look like.

In order to implement this database idea at a large scale,
one possibility is to allow contributions from many different
researchers, including those at other institutions. Doing so
would allow the database to increase in size, but allowing
multisite participation brings a number of other hurdles that
must be overcome. Although, anatomical scans do not differ
widely in format, these data and the associated contact infor-
mation must be transferred securely and with the agreement of
the IRBs for all participating institutions. Moreover, a much
larger and more secure hosting infrastructure would be re-
quired, with a dedicated server room being the ideal solution.

Key to a large-scale implementation of this idea will be the
issue of access. In order to maximize utility, any qualified
researcher should be able to access and employ the database,
as is the case for other major data release initiatives (e.g.,
ADNI, Mueller et al., 2005; OASIS, Marcus, Wang, Parker,
Csernansky,Morris, & Buckner 2007; BIRN, Zou et al., 2005;
HCP, Marcus et al., 2011). Enabling this access raises a
number of important additional issues that are not present in
the small-scale implementation. Although the number of par-
ticipants can grow if the database is opened up to multiple
contributors, the number of study requests made to partici-
pants must still be moderated so that they do not create a
burden on those who have contributed the individual data.
Before opening the database to all researchers, then, it might
make sense to limit access in some way, perhaps to those who
also contributed data.

In addition to the “who” question of access, one must
consider the question of “how.” Because very large amounts
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of data will exist and the database will be constantly
expanding, it is not likely to be feasible to allow the database
to be downloaded or transferred between locations. A more
parsimonious solution is to allow users from around the world
to view and analyze the data while it remains in a single
location, using an Internet portal. Keeping the data at a single
site allows for greater control and management of the data.
This also accords simplicity, in that only one IRB will be
involved in overseeing the ethical issues pertaining to main-
tenance and access of the database; the same IRB will also
oversee the conduct of the associated studies. In order to host
the data at a single site but still permit wide access, an analysis
portal is required. Such a portal would allow for analysis
procedures to be initiated and applied to the combined behav-
ioral and neuroimaging data remotely, without the need for the
data to be copied or transferred to other locations. One way to
achieve this might be to employ the LONI pipeline and its
Web Start functionality (Dinov et al., 2009). In this way, many
people may share access to the data, while keeping the data
anonymized and secure. As an additional advantage, a system
of this sort might also allow for a complete log of the analyses
to be recorded. Making this log public, perhaps in the form of
a URL provided with each article resulting from the database,
will result in greater transparency and replicability (addressing
two additional issues for research).

Once such a system has been implemented alongside a
flexible personality neuroscience database, we believe that
maintaining and operating such a system will require the
assistance of full-time staff such as administrative support
and analysis support. Salaries for these staff members could
be paid by various sources, but the most likely is a federal
research grant. These staff members would manage contact
with interested researchers, helping them to pose their surveys
and tasks to participants who have contributed neuroimaging
data to the database and assist with the analysis process. In
Table 1, we outline a possible workflow for a large-scale
implementation of our database idea. To begin with, the
personality neuroscience database is populated by the orga-
nizers (step 1). Users then contribute neuroimaging data (an-
atomical and/or resting state) that are paired with contact
information for those participants (step 2). These data are
screened for quality and proper anonymization of participants,
then added to the database. Users wishing to conduct a study
then submit a proposal that is evaluated by the database
organizers and staff for feasibility and appropriateness (step
3). At this stage, organizers can ensure that proposals are not
redundant with other projects already completed or underway.
Studies selected to move forward would be proposed to the
IRB of the institution hosting the database. These ethics
proposals would be prepared by the users with assistance from
the staff, but the actual submission would be done internally,
with the database owners acting as principal investigators and
the users as collaborators. Although this arrangement is

necessary to allow a local IRB to oversee the research process,
we are recommending as a form of best practice that only the
users be listed as authors on resultant publications, with the
database organizers and funding sources acknowledged in the
acknowledgments. Once the study has been approved by the
IRB, the users would program their online study and submit a
link to the database staff. These staff would then make the
study link available to database participants (e.g., posted to a
listserv or a Web site) (step 4). Although users provide the
funds for participant reimbursement, coordination of this pay-
ment is provided by the database organizers to maintain
participant anonymity. Once data collection is complete, on
the basis of a previously agreed upon timeline or target sample
size, these new data will be entered into the database and
associated with the contributing participant by the staff. Users
will then have the opportunity to begin analyzing these data,
with exclusive access to this additional data for a set period
such as 2 years (step 5). After this time, the additional data will
be made available to all users of the database. Using an
Internet portal, users will examine how the newly collected
data relate to the previously collected neuroimaging data,
perhaps in conjunction with the additional behavioral data in
the database. A log of all analysis steps will be recorded, and a
URL generated to provide public access to this log. Users will
be encouraged to publish this URL along with their data, in the
spirit of transparency and support of replicability. Ideally, no
fee or other compensation would be required for database
access, although in the absence of external funding or support,
some fee may be required to help support the salary of the staff
associated with maintaining the database. After the 2-year
grace period expires and the newly collected behavioral data
become publicly available, we recommend that the users who
originally proposed the study should have no claim to owner-
ship of these data. Other users who employ these data in their
own analyses should not be obligated to include anyone else
as authors on their papers—not the database organizers nor the
other users who contributed data that are incorporated into a
subsequent analysis. In our opinion, an open data-sharing
approach that is based on these principles would best serve
the field. There is, however, serious debate on this complicat-
ed issue, and individual database organizers should consider
all sides before adopting a particular policy regarding author-
ship (Hurko et al., 2012; Rohlfing & Poline, 2012).

Once the database grows large enough, access can be
opened up to include all qualified researchers, including those
who did not contribute neuroimaging data. In a future neuro-
science where one or more large-scale implementations of a
flexible personality database exist, a professor at a small
liberal arts college can teach his or her students about brain–
behavior relations by having them propose and then test a
hypothesis in a large data set, for very little cost. Personality
neuroscience studies involving hundreds of participants will
become the norm, alleviating the need to wonder how low
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statistical power impacts interpretation of the results. The end
result of a major, open-access database like what we are
proposing would be that large-scale analyses of how individ-
ual differences in behavior and cognition relate to brain struc-
ture and function will become relatively inexpensive, increas-
ing the number and diversity of such studies. What we pro-
pose will hopefully lead to a democratization of neuroscience,
with financial barriers reduced to that of a standard behavioral
study and neuroscience methods extended to scientists with-
out geographic or financial access to an MRI scanner. Doing
so will allow for major steps to be taken in neuroscience,
bringing us much closer to understanding how brain and
behavior relate.

Problems with our solution for the problem of power
in personality neuroscience

There are a number of obstacles to the creation of a flexible
personality neuroscience database of the form that we are
proposing. For one, some may wonder whether this proposal
is made redundant by the existence of other publicly available
data sets that also combine neuroimaging data with personal-
ity and behavioral data, such as IMAGEN (Thyreau et al.,
2012), the Human Connectome Project (Marcus et al., 2011),
the 1000 Functional Connectomes Project (Biswal et al.,
2010), and the Alzheimer's Disease Neuroimaging Initiative
(ADNI; Wyman et al., 2013). Each of these important data-
sharing initiatives provides qualified researchers with access
to hundreds of participants who have both contributed

neuroimaging data and completed other measures, including
measures of trait personality. However, none of these data-
bases allow for additional data to be collected from the par-
ticipants. In other words, the questions that can be investigated
with these data sets are limited by the measures included in the
current data set. The flexible database framework that we are
proposing, however, allows for additional data to be collected
from the participants who contributed the neuroimaging data,
which permits the investigation of new questions not original-
ly conceived when the participants were first scanned. This
prospective flexibility increases the utility of our proposed
database, since it allows for novel questions to be asked and
ensures that the utility of the original neuroimaging data is not
exhausted after repeated reanalysis. Moreover, because this
personality database idea can be usefully implemented at a
small scale (i.e., small groups of neuroimagers or a single lab)
using inexpensive resources, multiple such databases can be
created and can coexist. For small-scale implementations, our
proposal relies upon a very simple idea: aggregate structural
and resting-state data from current neuroimaging studies, gain
permission to contact past participants in the future, then
collect more data from these participants to test novel hypoth-
eses when combined with the neuroimaging data. Although
simple, if this idea is adopted by researchers, it will make
personality neuroscience investigations significantly less ex-
pensive to conduct, which in turn will hopefully increase the
number and quality of these types of studies. At a small scale,
this idea is much easier to instantiate than the major data-
sharing initiatives that have been previously attempted, since
access issues are limited to the small group of collaborating

Table 1 Workflow for a large-scale implementation of a flexible personality neuroscience database

Step Organizer/Staff Personality Neuroscience
Database

Contact
Database

Participant User

1 Conducts task-based studies Participates in research
Neuroimaging data added Contact details added

2 Contributes neuroscience
data with contact detailsNeuroimaging data added Contact details added

3 Proposes study

Evaluates proposal
and obtains ethical approval Programs online study

4 Contacts participants
for online study

Coordinates compensation
of participants

Behavioral data added,
associated with
neuroscience data

Participates in research

5 Assists with analysis as needed Analyzes neuroscience
and behavioral data.

After 2 years newly collected
behavioral data becomes
available to other users

Publishes results with
link to analysis log
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researchers. Admittedly, a large-scale implementation of this
idea would be far more difficult to produce, although it brings
a host of separate benefits to the field. That said, this frame-
work brings a number of important benefits to the field even
when only implemented at a small scale.

Another question that is often asked whenever a database
project is proposed is why one believes this idea will be possible
in light of past experiences with databases that have encountered
difficulties (e.g., fMRIDC, Van Horn & Gazzaniga, 2012;
Neurogenerator, Roland et al., 2001). For one, although these
past databases did encounter difficulties, they were successful in
supporting a number of new publications (Van Horn &
Gazzaniga, 2012). Second, there have been numerous other
database ideas that continue to support new investigations
(e.g., the ADNI [Mueller et al., 2005], the 1000 Functional
Connectomes Project, and the International Neuroimaging
Datasharing Initiative [fcon_1000.projects.nitrc.org]), including
the new Human Connectome Project that intends to publicly
release petabytes of data (Marcus et al., 2011). So the struggles
experienced by some past data-sharing efforts cannot alone be a
reason not to pursue new data-sharing ideas, especially in light of
the growing success of new efforts. Lastly, our database idea
differs from past initiatives in that it can be implemented at a
small scale among groups of researchers where the hurdles to
contributing and sharing are minor. More important, even at a
large scale, our proposal involves ease for contributors and is
relatively nonthreatening. What is being requested involves
minimal additional effort and little additional cost on the part
of the contributing researchers. High-resolution anatomical scans
are always collected as part of any neuroimaging study, and the
proposed database will not require any other information beyond
the participant’s contact information and minimal demographic
information, including sex and age. Specifically, there is no need
to describe the task or any other details of the study, since the
databasewill not require task-based functional (i.e., BOLD) data,
nor will the contributed data need to be altered to suit a particular
format before submission. By not asking for task-related func-
tional MRI data, there is also little risk that someone will
reanalyze the data in a way that might call the original re-
searchers’ published results into question, which is a concern
that can prevent researchers from sharing their data. Moreover,
the data requested are unlikely to be reanalyzed by the contrib-
uting researcher to test novel hypotheses, whichmeans that there
is little chance of a researcher missing out on an opportunity to
report a new finding. The analytic approach supported by this
database requires large sample sizes, larger than what most
single researchers will be able to muster in a short time span.
Contributing data to a flexible personality neuroscience database
will entail little additional work beyond what is already being
done for individual neuroimaging studies, and contribution will
entail no foreseeable risks for the researcher. The reward of being
able to conduct novel personality neuroscience studies with very
large sample sizes for low cost, however, is huge.

Another issue is whether one can properly study brain–
behavior associations when the brain data are collected at a
different time from the behavioral data. This is a valid and
intriguing point. Given evidence that brain structure can
change in response to age (Good et al., 2001) and experience
(Draganski et al., 2004; Woollett & Maguire, 2011), these are
legitimate concerns. What is important to point out, however,
is that these changes are unlikely to be confounded with key
variables of interest and will, therefore, simply introduce noise
into the analysis. In other words, if any associations are found
between brain structure and an individual-difference variable,
they must be strong enough to be robust to any noise intro-
duced by nonconcurrent assessment. The variability in brain
structure introduced by a time delay between imaging the
neuroanatomy and measuring some behavioral trait will not
be systematic or form a confound with key variables of
interest, so it will not produce false positives. Additionally,
basic traits are relatively stable for adults (Roberts, Walton, &
Viechtbauer, 2006; Terracciano, McCrae, & Costa, 2010). For
example, the Eugene-Springfield Community Sample
(Goldberg, 1999) has demonstrated that even when measures
are collected from the same individuals over a span of time as
long as 10 years, reliable associations can be uncovered that
replicate in samples where all measures were collected con-
currently (e.g., DeYoung, Quilty, & Peterson, 2007). More-
over, duration of time between scanning and behavioral data
collection can always be used as a covariate in analyses to take
into account the time between measurements. One real danger
with delays between neuroimaging and behavioral assessment
is that real effects may be attenuated by whatever noise is
introduced into the analysis by the delay. Nonetheless, given
the fact that creating this database and pursuing novel
questions will not be costly, coupled with the advan-
tages of operating with sufficient statistical power to
detect even small effects, the benefits would seem to
outweigh the costs.

An additional problem to consider is attrition. To what
degree will researchers be able to remain in contact with the
participants who contributed the original neuroimaging data?
One concern might be that undergraduate participants will be
unreachable after graduation, which is likely if these partici-
pants provide University e-mail accounts that are closed fol-
lowing graduation. However, as e-mail becomes a primary
mode of contact and communication, many universities are
now offering lifelong e-mail addresses to their students. For
universities who fail to do so, most students also maintain an
e-mail address that they intend to keep for life, since changing
accounts involves substantial hassle. To minimize the problem
of students’ providing e-mail addresses that they will stop
using upon graduation, those willing to be contacted in the
future can be explicitly encouraged to provide an e-mail
address they intend to keep for life. Moreover, the long history
of longitudinal research in psychology and other disciplines
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has already established that although attrition is a problem, it
is not an insurmountable one.

Another concern is whether the flexible and extensible
nature of the proposed database means that anonymity will
become harder to maintain as more and more data are collect-
ed. This is a genuine concern, in that a large amount of
demographic and geographic data could hypothetically be
employed to infer identity. However, in practice, the variables
of interest to researchers are unlikely to provide enough infor-
mation to support accurate inferences regarding identity (e.g.,
task performance or self-reports of traits and motivations).
That said, this is an important issue, and care should be taken
to ensure that the additional data collected are unlikely to
provide enough information to deanonymize participants.
This can be taken into consideration when study proposals
are evaluated. In conjunction, data-use agreements should
explicitly forbid attempting to identify any research
participant.

Conclusions

In proposing this idea for how a flexible and extensible
personality neuroscience database might be created, we hope
that researchers will consider implementing this idea on a
small scale. Doing so will require little by way of additional
resources and cost but will permit novel investigations of how
brain and behavior relate based on large samples affording
adequate statistical power. Although a large-scale implemen-
tation of this idea would entail a number of additional diffi-
culties that will require careful solutions, it would also bring
with it additional benefits, such as greater access and democ-
ratization of neuroscience research. It is our hope that these
ideas promote greater data-sharing among researchers, since
this is the simplest way that issues of low statistical power can
be overcome for personality neuroscience investigations.
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