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A B S T R A C T

Coordinate-based meta-analysis can provide important insights into mind-brain relationships. A popular approach
for curated small-scale meta-analysis is activation likelihood estimation (ALE), which identifies brain regions
consistently activated across a selected set of experiments, such as within a functional domain or mental disorder.
ALE can also be utilized in meta-analytic co-activation modeling (MACM) to identify brain regions consistently co-
activated with a seed region. Therefore, ALE aims to find consensus across experiments, treating heterogeneity
across experiments as noise. However, heterogeneity within an ALE analysis of a functional domain might
indicate the presence of functional sub-domains. Similarly, heterogeneity within a MACM analysis might indicate
the involvement of a seed region in multiple co-activation patterns that are dependent on task contexts. Here, we
demonstrate the use of the author-topic model to automatically determine if heterogeneities within ALE-type
meta-analyses can be robustly explained by a small number of latent patterns. In the first application, the
author-topic modeling of experiments involving self-generated thought (N¼ 179) revealed cognitive components
fractionating the default network. In the second application, the author-topic model revealed that the left inferior
frontal junction (IFJ) participated in multiple task-dependent co-activation patterns (N¼ 323). Furthermore, the
author-topic model estimates compared favorably with spatial independent component analysis in both simula-
tion and real data. Overall, the results suggest that the author-topic model is a flexible tool for exploring het-
erogeneity in ALE-type meta-analyses that might arise from functional sub-domains, mental disorder subtypes or
task-dependent co-activation patterns. Code for this study is publicly available (https://github.com/ThomasYeoLa
b/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic).
1. Introduction

Brain imaging experiments are often underpowered (Carp, 2012;
Poline et al., 2012; Button et al., 2013). Coordinate-based meta-analysis
provides an important framework for analyzing underpowered studies
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across different experimental conditions and analysis piplines to reveal
reliable trends (Wager et al., 2003; Fox et al., 2014; Poldrack and Yar-
koni, 2016). Large-scale coordinate-based meta-analyses synthesize
thousands of experiments across diverse experimental designs to discover
broad and general principles of brain organization and disorder (Laird
ingapore, Singapore.
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Fig. 1. Toy illustration of heterogeneity in neu-
roimaging meta-analysis. The middle panel shows
activation peaks reported from neuroimaging
experiments across multiple tasks within a func-
tional domain. Half the experiments are red dots;
half the experiments are yellow dots. The left
panel illustrates a possible outcome of activation
likelihood estimation (ALE), which converges on
regions consistently activated across experiments
(blue dotted circle). The right panel illustrates a
possible estimate by the author-topic model (Yeo
et al., 2015), which recovers overlapping patterns
(red and yellow ovals) corresponding to two
functional sub-domains. We note that the spatial
spread of the activation foci was exaggerated to
accentuate the overlaps and differences between
the activation patterns of the two functional
sub-domains.
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et al., 2011; Poldrack et al., 2012; Crossley et al., 2014). By contrast, the
vast majority of meta-analyses involve smaller number of experiments
that are expertly chosen (curated) to generate consensus on specific
functional domains (e.g., Binder et al., 2009), brain regions (e.g.,
Shackman et al., 2011) or disorders (e.g., Cortese et al., 2012).

A popular approach for smaller-scale meta-analyses is activation
likelihood estimation or ALE (Turkeltaub et al., 2002; Laird et al., 2005;
Eickhoff et al., 2009, 2012; Turkeltaub et al., 2012). ALE identifies brain
regions consistently activated across neuroimaging experiments within a
functional domain (Costafreda et al., 2008; Spaniol et al., 2009; Beissner
et al., 2013) or within a disorder (e.g., Fitzgerald et al., 2008; Minzenberg
et al., 2009; Di Martino et al., 2009). Thus, ALE treats heterogeneities
across studies as noise. Consequently, ALE analysis might miss out on
genuine biological heterogeneity indicative of functional sub-domains or
disorder subtypes.

For example, Fig. 1 (middle panel) illustrates activation foci from
experiments across multiple tasks associated with a hypothetical func-
tional domain. These foci are generated by two latent sub-domains
activating distinct, but overlapping, brain regions. Without prior
knowledge of the two sub-domains from theory or previous empirical
work, ALE will converge on regions commonly activated across both sub-
domains (Fig. 1 left panel). To get around this issue, meta-analytic studies
can sub-divide experiments into hypothetical functional sub-domains
before applying ALE. For example, a recent meta-analysis divided
working memory experiments into verbal versus non-verbal tasks, as well
as tasks involving object identity versus object locations (Rottschy et al.,
2012). However, manually subdividing experiments requires prior
knowledge of the sub-domains and may reinforce biases towards existing
concepts. By contrast, in this study, we explored whether a previously
published data-driven approach (author-topic model; Yeo et al., 2015)
can help uncover heterogeneities1 within ALE-type meta-analyses in a
bottom-up, data-driven fashion (Fig. 1 right panel).
1.1. Discovering sub-domains of self-generated thought

A good example in which ALE might miss out on functional sub-
domains is the default network and self-generated thought (Small-
wood, 2013; Andrews-Hanna et al., 2014). Self-generated thought in-
volves associative and constructive processes that take place within an
individual, and depends upon an internal representation to reconstruct or
imagine a situation, understand a stimulus, or generate an answer to a
1 We note that when estimating functional sub-domains, we are not interested
in capturing idiosyncrasies of individual experiments or even individual tasks.
Instead, we are hoping to estimate a small number of overlapping, but distinct
activation patterns (cognitive processes) that are recruited to different extents
across tasks.
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question. The term “self-generated thought” serves to contrast with
thoughts where the primary referent is based on immediate perceptual
input. By virtue of being largely stimulus independent or task unrelated,
self-generated thought has been linked with the functions of the default
network (Buckner et al., 2008; Andrews-Hanna et al., 2014). Previous
ALE meta-analyses have implicated the default network in many tasks
involving self-generated thought, including theory of mind, narrative
fiction, autobiographical memory and moral cognition (Spreng et al.,
2009; Binder et al., 2009; Mar, 2011; Sevinc and Spreng, 2014).

However, many studies have suggested that the default network
might be fractionated into sub-systems. For example, Andrews-Hanna
and colleagues have proposed a dorsomedial prefrontal subsystem pref-
erentially specialized for social cognition and narrative processing
(Andrews-Hanna et al., 2014; Spreng and Andrews-Hanna, 2015) and a
medial temporal lobe sub-system preferentially specialized for mnemonic
constructive processes (Andrews-Hanna et al., 2014; Christoff et al.,
2016). Both sub-systems might spatially overlap or inter-digitate across
multiple brain regions (Andrews-Hanna et al., 2014; Braga and Buckner,
2017), which would be challenging to ALE without assuming prior
knowledge of the sub-systems (Fig. 1). Furthermore, specific default
network fractionation details differed across studies (Laird et al., 2009a;
Andrews-Hanna et al., 2010b; Mayer et al., 2010; Humphreys et al.,
2015; Kernbach et al., 2018), so application of the author-topic model
might potentially clarify sub-systems subserving self-generated thought.
1.2. Discovering multiple co-activation patterns of the left inferior frontal
junction (IFJ)

Another common application of ALE is meta-analytic connectivity
modeling (MACM), which identifies brain regions that consistently co-
activate with a particular seed region (Toro et al., 2008; Koski and
Paus, 2000; Robinson et al., 2010; Eickhoff et al., 2010). The assumption
is that the seed region exhibits a single co-activation pattern regardless of
the actual task activating the seed region (Robinson et al., 2010). How-
ever, studies have shown the existence of multiple hub regions in the
brain (e.g., dorsal anterior insula, dorsal anterior cingulate cortex) that
are activated across many different tasks and might adapt their connec-
tivity pattern depending on task context (Cole et al., 2013; Uddin, 2015;
Bertolero et al., 2017). Thus, a seed region might be involved in multiple
task-dependent co-activation patterns (McIntosh, 2000).

A good example in which MACM might miss out on multiple co-
activation patterns is the left inferior frontal junction (IFJ; Muhle--
Karbe et al., 2015). The IFJ has been implicated in many cognitive pro-
cesses (Brass et al., 2005; Chikazoe et al., 2009a, b; Asplund et al., 2010)
and is a key node of the multiple-demand system (Duncan, 2010;
Fedorenko et al., 2013). IFJ might also coordinate information among
modules by adapting its connectivity patterns across different resting and
task states (Cole et al., 2013; Bertolero et al., 2018). Therefore, one might
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expect the IFJ region to exhibit multiple co-activation patterns that are
dependent on task contexts. Since ALE cannot capture heterogeneity
across experiments, MACM might be insensitive to such task-dependent
co-activation patterns. On the other hand, application of the
author-topic model to the IFJ region might yield multiple meaningful
co-activation patterns.

1.3. Author-topic model

In this work, we propose the use of the author-topic model to auto-
matically make sense of heterogeneity within ALE-type meta-analyses.
We have previously utilized the author-topic model (Fig. 2; Yeo et al.,
2015; Bertolero et al., 2015) to encode the intuitive notion that a
behavioral task recruits multiple cognitive components, which are in turn
supported by overlapping brain regions (Poldrack, 2006; Leech et al.,
2012; Barrett and Satpute, 2013). While our previous work focused on
large-scale meta-analysis across many functional domains (Yeo et al.,
2015; Bertolero et al., 2015), the current study focuses on heterogeneity
within a functional domain (self-generated thought) or co-activation
heterogeneity of a seed region (left IFJ). These applications of the
author-topic model are made possible by the development of a novel
inference algorithm for the author-topic model (Ngo et al., 2016) that is
sufficiently robust for smaller-scale meta-analyses.

Our choice of self-generated thought is motivated by previous work
suggesting the possibility of fractionating self-generated thought into
functional sub-domains (Section 1.1). Similarly, our choice of left IFJ is
motivated by previous work suggesting that IFJ might adaptively modify
its connectivity patterns across task contexts (Section 1.2). There are of
course other functional domains (e.g., executive function) that might be
fractionated and other hub regions (e.g., dorsal anterior insula) that
might exhibit task-dependent co-activation patterns. Therefore, we have
made our code publicly available for researchers to explore the hetero-
geneity of their preferred functional domain, hub region or mental
disorder.
Fig. 2. Author-topic model for coordinate-based meta-analysis (Yeo et al.,
2015). The underlying premise of the model is that behavioral tasks recruit
multiple cognitive components, which are in turn supported by overlapping
brain regions. The model parameters are the probability that a task would re-
cruit a cognitive component (Pr (component j task)) and the probability that a
component would activate a brain voxel (Pr (voxel j component)). The
author-topic model can be directly applied to estimate cognitive components
(sub-systems) of self-generated thought.
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2. Methods

2.1. Overview

In Section 2.2, we reviewed the author-topic model and how it could
be applied to coordinate-based meta-analysis (Yeo et al., 2015). Section
2.3 discussed simulations and comparisons with spatial independent
component analysis. Finally, the model was utilized in two different
applications. In the first application (Section 2.4), we applied the
author-topic model to discover cognitive components subserving
self-generated thought. In the second application (Section 2.5), we esti-
mated the co-activation patterns of the left IFJ.
2.2. Author-topic model

2.2.1. Intuition behind the model
The author-topic model was originally developed to discover topics

from a corpus of text documents (Rosen-Zvi et al., 2010). The model
represents each text document as an unordered collection of words
written by a group of authors. Each author is associated with a proba-
bility distribution over topics, and each topic is associated with a prob-
ability distribution over a dictionary of words. Given a corpus of text
documents, there are algorithms to estimate the distribution of topics
associated with each author and the distribution of words associated with
each topic. A topic is in some sense abstract, but is made concrete by its
association with certain words and its association with certain authors.
For example, if the author-topic model was applied to neuroimaging
research articles, the algorithm might yield a topic associated with the
author “Stephen Smith” and words like “fMRI”, “resting-state” and “ICA”.
One might then interpret the topic posthoc as a “resting-state fMRI”
research topic.

In a previous study (Yeo et al., 2015), the author-topic model was
applied to neuroimaging meta-analysis (Fig. 2) by treating task contrasts
in the BrainMap database (Fox and Lancaster, 2002) as text documents,
83 BrainMap task categories (e.g., n-back) as authors, cognitive compo-
nents as topics, and activation foci as words in the documents. Thus, the
model encodes the premise that different behavioral tasks recruit mul-
tiple cognitive components, supported by overlapping brain regions.

Suppose a study utilizes one or more task categories, resulting in an
experimental contrast yielding a collection of activation foci. Under the
author-topic model, each activation focus is assumed to be generated by
first randomly selecting a task from the set of tasks utilized in the
experiment. Given the task, a component is randomly chosen based on
the probability of a task recruiting a component (Pr (component j task)).
Given the component, the location of the activation focus is then
randomly chosen based on the probability that the component would
activate a voxel (Pr (voxel j component)). The entire collections of Pr
(component j task) and Pr (voxel j component) are denoted as matrices θ
and β, respectively. For example, the 2nd row and 3rd column of θ cor-
responds to Pr (3rd component j 2nd task) and the 4th row and 28th
column of β corresponds to Pr (28th voxel j 4th component). Therefore,
each row of θ and β sums to 1. The formal mathematical definition of the
model is provided in Supplemental Method S1.

A key property of the author-topic model is that the ordering of words
within a document is exchangeable. When applied to meta-analysis, the
corresponding assumption is that the ordering of activation foci is arbi-
trary. Although the ordering of words within a document is obviously
important, the ordering of activation foci is not. For example, in the
context of text documents, “dog has a bone” has a different meaning from
“bone has a dog”. On the other hand, in the context of a fMRI experiment,
reporting parietal activation coordinates followed by prefrontal activa-
tion coordinates is equivalent to reporting prefrontal activation co-
ordinates followed by parietal activation coordinates. Therefore, the
author-topic model is arguably more suitable for meta-analysis than
topic discovery from documents.
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2.2.2. Estimating the model parameters
Given a collection of experiments with their associated activation

coordinates and task categories, as well as the number of cognitive
components K, the probabilities θ and β can be estimated using various
algorithms (Rosen-Zvi et al., 2010; Yeo et al., 2015; Ngo et al., 2016).
Here, we chose to utilize the CVB algorithm because the algorithm was
more robust to the choice of hyperparameters in smaller datasets.
Although the CVB algorithm for the author-topic model was first intro-
duced in a conference article (Ngo et al., 2016), detailed derivations have
not been published. For completeness, detailed derivations of the
author-topic CVB algorithm are provided in Supplemental Method S2.
Explanations of why the CVB algorithm is theoretically better than the
EM algorithm and standard variational Bayes inference are found in
Supplemental Method S3. In this work, Bayesian information criterion
(BIC) was used to estimate the optimal number of cognitive components
(Supplemental Method S4). Further implementation details are found in
Supplemental Method S5.

2.2.3. Input to the author-topic model
Each task activation contrast was associated with a set of activation

foci. The spatial locations (i.e., coordinates) of the activation foci were
reported in or transformed to the MNI152 coordinate system (Lancaster
et al., 2007). Using standard meta-analysis procedure (Wager et al.,
2009; Yarkoni et al., 2011; Yeo et al., 2015), a 2mm-resolution binary
activation image was created for each experimental contrast, in which a
voxel was given a value of 1 if it was within a 10mm-radius of any
activation focus, and 0 otherwise. Thus, the set activated voxels of each
experiment in the author-topic model corresponds to the set of voxels
with a value of 1 in the corresponding 2mm-resolution binary activation
image. We note that the exact choice of smoothing radius did not
significantly affect the results (see Section 3.4).
2.3. Simulations

2.3.1. Independent component analysis (ICA)
ICA is a data-driven technique that has been widely applied to fMRI

(Calhoun et al., 2001; Beckmann and Smith, 2004). ICA has also been
successfully applied to coordinate-based meta-analysis (Smith et al.,
2009). However, the author-topic model has a few significant advantages
over ICA in the case of coordinate-based meta-analysis. First, activation
foci are binary data in the sense that a voxel is either reported to be
activated or not in an experiment. However, ICA requires positive and
negative values in the input data, which involves demeaning the binary
values at each voxel (across experiments). In contrast, the author-topic
model makes direct use of the binary activation data. Second, the
author-topic model is able to exploit task categorical information (red
task layer in Fig. 2), which is non-trivial to introduce in ICA.

Most importantly, ICA estimates can be negative, which do not make
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sense in the case of coordinate-based meta-analysis. For example, a task
should not be allowed to be negatively associated with a component,
since task activation and de-activation in a coordinate-based meta-anal-
ysis are typically handled separately. Similarly, it does not make sense for
the activation maps associated with each component to be negative. The
situation is of course reversed in image-based meta-analysis (Salimi--
Khorshidi et al., 2009), where there might be both activation and
de-activation. For image-based meta-analysis, it does make sense to talk
about components being negatively recruited by a task and ICA makes
more theoretical sense than the author-topic model.

2.3.2. Simulation details
Here, we considered simulations to compare the effectiveness of the

author-topic model and ICA. More specifically, we considered a hypo-
thetical situation in which five tasks from a functional domain recruited
two cognitive components with different probabilities (Fig. 3A). The two
components have distinct activation patterns on a 2D “brain” of 256 by
256 pixels. More specifically, each component is associated with acti-
vations within two Gaussian distributions centered at two opposite
quadrants of the 2D brain (Fig. 3B). Given the activation foci of multiple
experiments (task contrasts), the goal was to automatically recover the
two cognitive components using either the author-topic model or ICA.

A single simulation run comprised 150 experiments (task contrasts),
which is comparable to a typical meta-analysis (c.f. self-generated
thought in Section 2.4). Each experiment (task contrast) was randomly
assigned to one of the five tasks, with the contrast distributions skewed
towards two of the five tasks to simulate the fact that some tasks are more
popular than others in the literature. Furthermore, each task contrast is
randomly chosen to have between 1 and 10 activation foci. For each
activation focus, a component was randomly sampled based on the
probability of components given the task assigned to the experiment. For
the given component, one of the 2-D Gaussian distributions of each
component was randomly chosen with equal probabilities (Fig. 3B). The
spatial location of the activation focus was then randomly sampled from
the Gaussian distribution. The activation focus was smoothed with a
binary smoothing kernel, such that all pixels within 10 voxels from an
activation focus were given a value of 1, and 0 otherwise.

For a given simulation run, the latent components were estimated
using either ICA or the author-topic model. We considered three possible
ICA setups. The first two setups (ICA1 and ICA2) utilized CanICA (Var-
oquaux et al., 2010), an ICA decomposition implementation provided
with Nilearn (Abraham et al., 2014). CanICA extracts representative
patterns of multi-subject fMRI data by performing ICA on a data subspace
common to the group (Varoquaux et al., 2010). In the two setups ICA1
and ICA2, each task was treated as a subject. In ICA1, the activation maps
of all experiments assigned to the same task were summed together, i.e.,
each task was treated as a single subject with a single time point. In ICA2,
each task was treated as a single subject, but the experiments assigned to
Fig. 3. Simulation of heterogeneity in coordinate-
based meta-analysis. (A) Bar chart shows five tasks
from a functional domain recruiting two cognitive
components with different probabilities. (B) Activa-
tion patterns of two components on a 2D “brain” of
256 by 256 pixels. Each component is associated with
activations (white crosses) within two Gaussian dis-
tributions centered at two opposite quadrants of the
2D “brain”. For each simulation run, the probability of
a task recruiting a component and the covariances of
each component's 2D Gaussian distributions were
randomly generated. The author-topic model and ICA
were then applied to recover the two components. We
note that ICA mixture weights can be negative, which
does not make sense in the context of coordinate-
based meta-analysis. As such, we discarded simula-
tion runs if any of the ICA estimates yielded negative
weights.
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the given task were treated as separate time points of the subject. The
third setup (ICA3) utilized the MELODIC implementation of ICA from the
FSL package (Beckmann and Smith, 2004; Smith et al., 2004).

To evaluate the estimation quality, Pearson's correlation coefficient
was computed between the groundtruth probability distribution of a
component activating a vertex (Pr (vertex j component)) against the es-
timates from the author-topic model or ICA. Pearson's correlation coef-
ficient was also computed between the groundtruth distribution of
components given a task (Pr (component j task)) and estimates from the
author-topic model or ICA.

The simulation was repeated multiple times. For a given simulation
run, the covariances of each component's 2D Gaussian distributions were
randomly generated (Fig. 3B). The probability of a task recruiting a
component was also randomly generated (Fig. 3A). As explained previ-
ously (Section 2.3.1), ICA's mixture weights can be negative, which im-
plies negative associations between tasks and components. This does not
make sense in the case of coordinate-based meta-analysis, so we dis-
carded simulation runs if any of the ICA estimates yielded negative
weights. Overall, we ran roughly 300 simulation runs in order to yield
exactly 100 simulation runs, in which ICA estimates were valid.

2.4. Self-generated thought

2.4.1. Activation foci of experiments involving self-generated thought
To explore cognitive components subserving self-generated thought,

we considered 1812 activation foci from 179 experimental contrasts
across 167 imaging studies, each employing one of seven task categories
subjected to prior meta-analysis with GingerALE (Fox and Lancaster,
2002; Laird et al., 2009b, 2011; Fox et al., 2014; http://brainmap.org/a
le). Of the 167 studies, 48 studies employed “Autobiographical Memory”
(N¼ 19), “Navigation” (N¼ 13) or “Task Deactivation” (N¼ 16) tasks.
The 48 studies were employed in a previous meta-analysis examining the
default network (Spreng et al., 2009). There were 79 studies involving
“Story-based Theory of Mind” (N¼ 18), “Nonstory-based Theory of
Mind” (N¼ 42) and “Narrative Comprehension” (N¼ 19) tasks. The 79
studies were utilized in a previous meta-analysis examining social
cognition and story comprehension (Mar, 2011). Finally, there were 40
studies involving the “Moral Cognition” task that was again utilized in a
previous meta-analysis (Sevinc and Spreng, 2014). The list of all exper-
iments included in the dataset are provided in Supplemental Method S7.
The criteria for selecting the experiments can be found in the original
meta-analyses (Spreng et al., 2009; Mar, 2011; Sevinc and Spreng, 2014).
All foci coordinates were in or transformed to the MNI152 coordinate
system (Lancaster et al., 2007).

2.4.2. Discovering cognitive components of self-generated thought
The application of the author-topic model to discover cognitive

components subserving self-generated thought (Fig. 2) is conceptually
similar to the original application to the BrainMap (Yeo et al., 2015). The
key difference is that the current application is restricted to seven related
tasks in order to discover heterogeneity within a single functional
domain, while the original application sought to find common and
distinct cognitive components across domains.

The model parameters are the probability of a task recruiting a
component (Pr (component j task)) and the probability of a component
activating a brain voxel (Pr (voxel j component)). The parameters were
estimated from the 1812 activation foci from the previous section using
the CVB algorithm (Supplemental Methods S2 and S5). BIC was used to
estimate the optimal number of cognitive components (Supplemental
Method S4).

2.4.3. Interpreting cognitive components of self-generated thought
We note that Pr (component j task) can be interpreted as follows.

Suppose Pr (component C1 j autobiographical memory) is equal to 0.63
and an autobiographical memory experiment reports 100 activation foci.
Then, on average, 63 of the 100 foci will fall inside component C1.
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The matrix Pr (voxel j component), β, can be interpreted as K brain
images in MNI152 coordinate system (Lancaster et al., 2007), where K is
the number of cognitive components. Volumetric slices highlighting
specific subcortical structures were displayed using FreeSurfer (Fischl,
2012). The cerebral cortex was visualized by transforming the volumetric
images from MNI152 space to fs_LR surface space using Connetome
Workbench (Van Essen et al., 2013) via the FreeSurfer surface space
(Buckner et al., 2011; Fischl, 2012). For visualization purpose, isolated
surface clusters with less than 20 vertices were removed. Pr (component j
task) was thresholded at 1/K, and Pr (voxel j component) was thresh-
olded at 1e-5, consistent with previous work (Yeo et al., 2015). Unthre-
sholded maps of the components are available on NeuroVault
(Gorgolewski et al., 2015) at https://neurovault.org/collections/4684/.

2.4.4. Goodness of fit
For each task, we computed the weighted average of the cognitive

components (Pr (voxel j component)), where the weights corresponded
to the probabilities of the task recruiting the components (Pr (component
j task)). This weighted average spatial map could be interpreted as the
model estimate of the “ideal” (reconstructed) activation map for a
particular task. The model fit was good if a task's reconstructed activation
map was similar to the empirical activation map of the task (obtained by
averaging the activation maps of all experiments employing the task).
Therefore, we computed Pearson's correlation coefficient between all
pairs of reconstructed and empirical activation maps, yielding a 7� 7
correlation matrix (since there were 7 tasks).

2.4.5. Correspondence between cognitive components and resting-state
networks

Motivated by similarities between task and resting-state networks
(Smith et al., 2009; Laird et al., 2011; Yeo et al., 2015), we compared the
cognitive components of self-generated thought with a previously pub-
lished set of 17 resting-state networks (Yeo et al., 2011). For each
resting-state network and each cognitive component, the probability of
the cognitive component activating a voxel (Pr (voxel j component)) was
averaged across all voxels within the network, resulting in an average
probability of a component activating the given network.

2.5. Left inferior frontal junction (IFJ)

2.5.1. Activation foci of experiments activating the left IFJ
To explore task-dependent co-activation patterns expressed by the left

IFJ, we considered activation foci from experiments reporting activation
within a left IFJ seed region (Fig. S1) delineated by a previous study
(Muhle-Karbe et al., 2015). Muhle-Karbe and colleagues performed a
co-activation-based parcellation of a left lateral prefrontal region into six
parcels, including an IFJ region (Muhle-Karbe et al., 2015). The parcel-
lation procedure assumed that voxels within a parcel exhibited a single
co-activation pattern. Thus, the advantage of using this particular IFJ
seed region (instead of an IFJ region from a different study) is that this
region is thought to exhibit a single co-activation pattern (according to
MACM).

This seed region is publicly available on ANIMA (Reid et al., 2016a;
http://anima.fz-juelich.de/studies/MuhleKarbe_2015_IFJ). We selected
experiments from the BrainMap database with at least one activation
focus falling within the IFJ seed region. We further restricted our ana-
lyses to experimental contrasts involving normal subjects. Overall, there
were 323 experiment contrasts from 238 studies with a total of 5201
activation foci. The list of all experiments included in the dataset are
provided in Supplemental Method S8.

2.5.2. Discovering co-activation patterns of the IFJ
To apply the author-topic model to discover co-activation patterns,

we consider each of the 323 experimental contrasts to employ its own
unique task category (Fig. 4). In the parlance of the author-topic model,
we assumed each document (experiment) has its own unique author

http://brainmap.org/ale
http://brainmap.org/ale
https://neurovault.org/collections/4684/
http://anima.fz-juelich.de/studies/MuhleKarbe_2015_IFJ


Fig. 4. Author-topic model for discovering co-activation patterns of the inferior
frontal junction (IFJ). In contrast to Fig. 2, this instantiation of the model as-
sumes that each experiment constitutes a unique task. The premise of the model
is that the IFJ expresses multiple overlapping task-dependent co-activation
patterns. The model parameters are the probability of an experiment recruiting a
co-activation pattern (Pr (co-activation pattern j experiment)), and the proba-
bility of a voxel being associated with a co-activation pattern (Pr (voxel j co-
activation pattern)).
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(task). The premise of the model is that the IFJ expresses one or more
overlapping co-activation patterns depending on task contexts. A single
experiment activating the IFJ might recruit one or more co-activation
patterns. The model parameters are the probability that an experiment
would recruit a co-activation pattern (Pr (co-activation pattern j experi-
ment)), and the probability that a voxel would be involved in a co-
activation pattern (Pr (voxel j co-activation pattern)). The parameters
were estimated from the 5201 activation foci from the previous section
using the CVB algorithm (Supplemental Method S2 and S5). BIC was used
to estimate the optimal number of co-activation patterns (Supplemental
Method S4).

2.5.3. Interpreting co-activation patterns of the IFJ
Similar to the previous application on self-generated thought, the

matrix Pr (voxel j co-activation pattern), β, was visualized as K brain
images in both fs_LR surface space and MNI152 volumetric space. Like
before, isolated surface clusters with less than 20 vertices were removed
for the purpose of visualization. Unthresholded spatial maps of the co-
activation patterns are available on NeuroVault (Gorgolewski et al.,
2015) at https://neurovault.org/collections/4718/.

Because each of the 323 experiments was treated as employing a
unique task category, Pr (co-activation pattern j experiment), θ, is a
matrix of size K � 323. θ was further mapped onto BrainMap task cat-
egories to assist in the interpretation. More specifically, since the ex-
periments were extracted from the BrainMap database, each experiment
was tagged with one or more BrainMap task categories (Table S1). The Pr
(co-activation pattern j experiment) was averaged across experiments
employing the same task category to estimate the probability that a task
category would recruit a co-activation pattern (Pr (co-activation pattern c
j task t)). Further details of this procedure are found in Supplemental
Method S6. The Pr (co-activation pattern j task) can be interpreted as
follows. Suppose Pr (co-activation pattern C1 j semantic monitoring/
discrimination) is equal to 0.51 and we have a semantic monitoring/
discrimination experiment that reports activation in the left IFJ and 100
activation foci. Then, on average, 51 foci will fall inside co-activation
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pattern C1.
We note that directly using the BrainMap task categories to interpret

the co-activation patterns is tricky. This is because a BrainMap task
category might only have a very small percentage of experiments acti-
vating the IFJ, so these experiments might not be representative of the
task category. For example, of the 230 experiments in the BrainMap
database labeled as the “Encoding” task category, only 13 experiments
reported activations in the left IFJ. Thus, the 13 experiments were not
simply encoding tasks, but encoding tasks that happened to activate the
IFJ. This is the reason why the BrainMap task categories were not directly
utilized in the author-topic model for the IFJ analysis and that each
experiment was treated as employing a unique task category (c.f. self-
generated thought in Section 2.4).

To ensure an appropriate interpretation, we inspected the original
publications associated with the top three experiments with the highest
Pr (co-activation pattern j experiment) for each of the top three tasks
associated with each co-activation pattern, i.e., nine publications for each
co-activation pattern. The literature analysis allowed us to determine if
there were common neural processes underlying the subset of experi-
ments within each task category that strongly activated the IFJ.

2.6. Goodness of fit

For each co-activation pattern, activation maps of the top three ex-
periments with the highest probability of recruiting a co-activation
pattern (i.e., Pr (co-activation pattern j experiment)) for each of the top
three tasks associated with the co-activation pattern (i.e., nine activation
maps in total) were averaged, resulting in an empirical activation map
associated with each co-activation pattern. The model fit was good if the
empirical activation map was similar to the estimated co-activated
pattern. Therefore, we computed Pearson's correlation coefficient be-
tween all pairs of empirical activation maps and co-activation maps,
yielding a K � K correlation matrix, where K is the number of co-
activation patterns estimated by BIC.

2.7. Data and code availability

Activation foci from the meta-analysis of self-generated thought and
the source code of the author-topic model, including the visualization
and analysis tools, are publicly available at https://github.com/Thoma
sYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_Au
thorTopic. The activation foci from the meta-analysis of IFJ can be ob-
tained via a collaborative-use license agreement with BrainMap (http
://www.brainmap.org/collaborations.html).

3. Results

3.1. Overview

In Section 3.2, we show simulation results suggesting that the author-
topic model compares favorably with ICA in the goal of discovering latent
patterns in coordinate-based meta-analysis. We then explored the
cognitive components of self-generated thought (Section 3.3) and the co-
activation patterns of the IFJ (Section 3.4). Finally, Section 3.5 discusses
a few control analyses.

3.2. Simulations

Fig. 5 shows the results of one representative simulation (see Section
2.3 for details). Fig. 5A shows the groundtruth 2D “brain” maps for this
representative simulation run. The two leftmost columns show simulated
activation foci as white crosses overlaid on top of the 2D Gaussian dis-
tributions used to generate the foci. The rightmost bar chart shows the
probability of each of the 5 tasks recruiting a component.

The rightmost column of Fig. 5B shows the author-topic model esti-
mates of the probability of each of the 5 tasks recruiting a component.

https://neurovault.org/collections/4718/
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic
https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic
http://www.brainmap.org/collaborations.html
http://www.brainmap.org/collaborations.html


Fig. 5. Simulation comparing the author-topic
model and ICA. (A) Single representative simu-
lation run. Two leftmost columns show activation
foci (white crosses) on top of Gaussian distribu-
tions used to generate the foci. Rightmost bar
chart shows the probability of each of the 5 tasks
recruiting a component. (B) Author-topic model
estimates. (C-E) ICA estimates. Number below
each panel is the correlation between model es-
timates and groundtruth averaged across 100
simulation runs. Observe that ICA can yield
negative weights, which do not make sense in the
context of a coordinate-based meta-analysis (see
discussion in Section 2.3.1). We note that about
300 simulation runs were performed in order to
generate 100 simulation runs in which ICA esti-
mates of mixture weights were non-negative.
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The rightmost column of Fig. 5C to E shows the ICA mixture weights,
normalized so they sum to one.2 The mixture weights represent the as-
sociation between the tasks and the components. The numbers at the
bottom of each panel are the correlations between the estimates and
groundtruth averaged across 100 simulation runs. In general, the author-
topic model yielded better estimates of the associations between tasks
and components.

Fig. 5B shows the author-topic model estimates, while Fig. 5C to E
shows the ICA estimates. The two leftmost columns show the spatial
maps of the two components estimated by the author-topic model or ICA.
The numbers at the bottom of each panel are the correlations between the
estimated and groundtruth “brain”maps averaged across 100 simulation
runs. In general, the author-topic model yielded better estimates of the
groundtruth “brain” maps. It is also worth noting that the ICA spatial
maps showed negative values, even though the simulation runs had been
constrained to those where ICA mixture weights were positive.3 As pre-
viously explained (Section 2.3.1), negative values are not meaningful in
the context of coordinate-based meta-analysis.
2 Recall that simulation runs were discarded if ICA yielded negative weights.
3 Note that this is after adding back the mean signal removed during the ICA

de-meaning step.

148
3.3. Self-generated thought

3.3.1. ALE meta-analysis of self-generated thought
Fig. 6 shows the activation likelihood estimate (ALE) of experiments

involving self-generated thought. Statistical significance was established
with 1000 permutations. The map was thresholded at a voxel-wise un-
corrected threshold of p< 0.001 and cluster-level family-wise error rate
threshold of p< 0.01. Consistent with previous studies, ALE reveals a
constellation of regions typically referred to as the default network
(Raichle et al., 2001; Buckner et al., 2008; Spreng et al., 2009). However,
as previously discussed, ALE cannot reveal functional sub-domains
within self-generated thought without prior assumptions about the
sub-domains. Therefore, in the next section, we explored the use of the
author-topic model.

3.3.2. Cognitive components of self-generated thought
Fig. 7 shows the cognitive components of self-generated thought

estimated by the author-topic model. Fig. 7A shows the BIC score as a
function of the number of estimated cognitive components. A higher BIC
score indicates a better model. Because the 2-component estimate ach-
ieved the highest BIC score, subsequent results will focus on the 2-compo-
nent estimate.

The 2-component estimate is shown in Fig. 7B. The seven tasks
recruited the two cognitive components to different degrees. The top



Fig. 6. Activation likelihood estimate (ALE) of experiments involving self-
generated thought. Consistent with previous studies, ALE reveals a set of re-
gions corresponding to the default network. However, ALE cannot provide in-
sights into functional sub-domains without prior assumptions about the
sub-domains.

4 Given that the “undesirable” 5-pattern estimate had the highest BIC, these
results emphasized the fact that the BIC should only be treated as a guide to the
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tasks recruiting component C1 were “Navigation” and “Autobiographical
Memory”. In contrast, the top tasks recruiting component C2 were
“Narrative Comprehension”, “Theory of Mind (story-based)”, “Task
deactivation”, “Theory of Mind (nonstory-based)”, and “Moral
Cognition”.

Compared with Fig. 6, the two cognitive components appeared to
decompose the activation pattern revealed by ALE. The two cognitive
components appeared to activate different portions of the default
network (Fig. 7B). Focusing our attention to the medial cortex, both
components had high probability of activating the medial parietal cortex.
However, while component C2's activation was largely limited to the
precuneus, component C1's activation also included the posterior
cingulate and retrosplenial cortices in addition to the precuneus. Both
components also had high probability of activating the medial prefrontal
cortex (MPFC). However, component C1's activations were restricted to
the middle portion of the MPFC, while component C2's activations were
restricted to the dorsal and ventral portions of the MPFC. Finally,
component C1, but not component C2, had high probability of activating
the hippocampal complex.

Switching our attention to the lateral cortex, component C1 had high
probability of activating the posterior inferior parietal cortex, while
component C2 had high probability of activating the entire stretch of
cortex from the temporo-parietal junction to the temporal pole.
Component C2 was significantly more likely than component C1 to
activate the inferior frontal gyrus.

3.3.3. Goodness of fit
Fig. 8 shows the correlation matrix between the empirical activation

maps of seven tasks involving self-generated thought (rows) and seven
task activation maps reconstructed from the author-topic model param-
eter estimates (columns). The diagonal entries of the correlation matrix
were significantly higher than the off-diagonal entries: average diagonal
entry was 0.69, while the average off-diagonal entry was 0.50. Overall,
this suggests a good model fit. However, the diagonal entries were not
always the highest and there was a clear block-diagonal structure. Not
surprisingly, the top left block corresponded to the top two tasks
recruiting component C1 (Fig. 7), while the bottom right block corre-
sponded to the top five tasks recruiting component C2 (Fig. 7).
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3.3.4. Correspondence with resting-state networks
The average probability of each self-generated thought cognitive

component activating each resting-state network (Yeo et al., 2011) is
shown in Fig. S2. Four resting-state networks with the highest probability
of being activated by either component are shown in Fig. 9. Three of
these resting-state networks were previously considered to be fraction-
ation of the default network (Yeo et al., 2014).

The Default C resting-state network was most strongly activated by
component C1, while the temporal parietal resting-state network was
most strongly activated by component C2. On the other hand, Default A
and B resting-state networks were preferentially activated by compo-
nents C2.
3.4. Left inferior frontal junction (IFJ)

3.4.1. ALE meta-analysis of the left IFJ's co-activation pattern
Fig. 10 shows the co-activation pattern of the left IFJ estimated by the

application of ALE tometa-analytic co-activationmodeling (Muhle-Karbe
et al., 2015). Statistical significance was established with 1000 permu-
tations. The map was thresholded at a voxel-wise uncorrected threshold
of p< 0.001 and cluster-level family-wise error rate threshold of
p< 0.01. The co-activation pattern was mostly bilateral and involved
dorsolateral prefrontal cortex, anterior insula, superior parietal lobules,
posterior medial frontal cortex and the fusiform gyri. As previously dis-
cussed, ALE delineates regions consistently activated across studies, but
cannot reveal potential task-dependent co-activation patterns. Therefore,
in the next section, we explored the use of the author-topic model.

3.4.2. Task-dependent co-activation patterns of the left IFJ
Fig. 11 shows the co-activation patterns of the left IFJ estimated by

the author-topic model. Fig. 11A shows the BIC score as a function of the
number of estimated co-activation patterns. There were two peaks cor-
responding to the 3-pattern and 5-pattern estimates. Fig. S3 shows the 5-
pattern estimate. Although the 5-pattern estimate had a higher BIC score
than the 3-pattern estimate, the co-activation patterns appeared to frac-
tionate the IFJ into smaller territories. While this fractionation was
intriguing, our goal was to examine if the IFJ exhibited task-dependent
co-activation patterns and not whether it can be further fractionated.
Thus, the 5-pattern estimate represented a degenerate solution from this
perspective.4

Fig. 11B shows the co-activation patterns from the 3-pattern estimate.
Unlike the 5-pattern estimate, the 3 co-activation patterns appeared to
overlap completely within the IFJ. Therefore, subsequent results will
focus on the 3-pattern estimate. Overall the 3 co-activation patterns
appeared to decompose the consensus co-activation pattern revealed by
ALE (Fig. 10).

Co-activation pattern C1 was left lateralized andmight be recruited in
tasks involving language processing. Co-activation pattern C2 involved
bilateral superior parietal and posterior medial frontal cortices, and
might be recruited in tasks involving attentional control. Co-activation
pattern C3 involved bilateral frontal cortex, anterior insula and poste-
rior medial frontal cortex, and might be recruited in tasks involving in-
hibition or response conflicts.

We now discuss in detail spatial differences among the co-activation
patterns. Co-activation pattern C3 strongly engaged bilateral anterior
insula, while co-activation pattern C1 only engaged left anterior insula.
The activation of the anterior insula was much weaker in co-activation
pattern C2.

In the frontal cortex, co-activation pattern C1 had high probability of
activating the left inferior frontal gyrus, while co-activation pattern C3
number of cognitive components or co-activation patterns, rather than providing
a definitive answer.



Fig. 7. Cognitive components of self-generated
thoughts. (A) Bayesian Information Criterion
(BIC) plotted as a function of the number of
estimated cognitive components. A higher BIC
indicates a better model. BIC peaks at 2 compo-
nents. (B) 2-component model estimates. Each
line connects 1 task with 1 component. The
thickness and brightness of the lines are propor-
tional to the magnitude of Pr (component j task).
For each component, the four leftmost figures
show the surface-based visualization for the
probability of components activating different
brain voxels (i.e., Pr (voxel j component)),
whereas the rightmost figure show a volumetric
slice highlighting subcortical structures being
activated differently across components. The top
color bar is utilized for the surface-based visual-
ization, whereas the bottom color bar is utilized
for the volumetric slices. The tables on the right
show the top tasks most likely to recruit the two
components. The numbers in the right column
correspond to Pr (component j task). Navigation
and Autobiographical Memory preferentially
recruited component C1, whereas Narrative
Comprehension, Theory of Mind (ToM), Task
Deactivation and Moral Cognition preferentially
recruited component C2.
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had high probability of activating bilateral dorsal lateral prefrontal cor-
tex. Although all three co-activation patterns also had high probability of
activating the posterior medial frontal cortex (PMFC), the activation
shifted anteriorly from co-activation patterns C1 to C2 to C3.

In the parietal cortex, co-activation pattern C2 included the superior
parietal lobule and the intraparietal sulcus in both hemispheres. C1 and
C3 did not activate the superior parietal cortex. Finally, co-activation
pattern C1 engaged bilateral superior temporal cortex, which might
overlap with early auditory regions. Both co-activation patterns C1 and
C2 also had high probability of activating ventral visual regions, espe-
cially in the fusiform gyrus.

The top three tasks recruiting each co-activation pattern is shown in
Fig. 11B. For completeness, the top five tasks recruiting each co-
activation pattern are shown in Table S2. The top tasks with the high-
est probability of recruiting co-activation pattern C1 were “Semantic
Monitoring/Discrimination”, “Covert Reading”, and “Phonological
Discrimination”. The top tasks recruiting co-activation pattern C2 were
“Counting/Calculation”, “Task Switching”, and “Wisconsin Card Sorting
Test”. The top tasks recruiting co-activation pattern C3 were “Go/No-
Go”, “Encoding”, and “Overt Word Generation”.

At first glance, the top three tasks for co-activation pattern C3 (“Go/
No-Go”, “Encoding”, and “Overt Word Generation”) might not seem to be
similar tasks. The reason for this incongruence was previously explained
in Section 2.5.3 and was due to the fact that the experiments activating
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IFJ might not be representative of their task categories. Indeed, of the
123 BrainMap experiments labeled as the “Overt Word Generation” task,
only 6 experiments reported activation in the IFJ. Thus, the 6 experi-
ments were not simply “Overt Word Generation” task, but “Overt Word
Generation” experiments that happened to activate the IFJ. This moti-
vated further examination of the original publications associatedwith the
top experiments activating IFJ in order to interpret the co-activation
patterns (see Section 4.2 for discussion).

Table S3-A to S3-C list the top three experiments with the highest Pr
(co-activation pattern j experiment) for each of the top three tasks
associatedwith each co-activation pattern. For example, Tables S3–A lists
the top three experiments employing “Semantic Monitoring/Discrimi-
nation”, “Covert Reading” or “Phonological Discrimination” with the
highest Pr (co-activation pattern C1 j experiment).

To further ensure that the 3 co-activation patterns were not frac-
tionating IFJ (like the 5-pattern estimate), Fig. S4 illustrates the activa-
tion foci of the top three experiments with the highest Pr (co-activation
pattern j experiment) for each of the top three tasks associated with each
co-activation pattern falling inside the IFJ. Table 1 shows the mean and
standard deviation of the coordinates of these activation foci (within IFJ)
for each co-activation pattern. The mean locations of the IFJ activations
across co-activation patterns did not differ by more than 2.5 mm along
any dimension, suggesting that the co-activation patterns were probably
not simply sub-dividing the IFJ.



Fig. 8. Goodness of fit of the author-topic model for self-generated thought. The
matrix represents the correlations between the empirical activation maps (rows)
and reconstructed activation maps (columns) of seven tasks. The tasks follow the
same ordering as in Fig. 7. The diagonal values (average r¼ 0.69) were larger
than off-diagonal values (average r¼ 0.50), suggesting a good model fit.

Fig. 10. Co-activation pattern of the left inferior frontal junction (IFJ) estimated
by the application of ALE to perform meta-analytic co-activation mapping. The
IFJ seed region is delineated by a white boundary.
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3.4.3. Goodness of fit
Fig. 12 shows the correlation matrix between IFJ's co-activation

patterns (columns) and the average activation maps of the top three
tasks associated with each co-activation pattern (rows). The diagonal
entries of the correlation matrix were significantly higher than the off-
diagonal entries: average diagonal entry was 0.75, while the average
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off-diagonal entry was 0.31. Overall, this suggests a good model fit.

3.5. Control analyses

3.5.1. Smoothing
To create the input data for the author-topic model, the activation foci

were smoothed with a 10mm binary smoothing kernel (see Section
2.2.3), consistent with previous work (Wager et al., 2003; Yarkoni et al.,
2011; Yeo et al., 2015). Using different smoothing radii yielded similar
cognitive components of self-generated thought (Fig. S5) and
co-activation patterns of the IFJ (Fig. S6).

3.5.2. Independent component analysis
For comparison, Fig. S7 shows the ICA (ICA1-nilearn) estimate of 2

components of self-generated thought. The estimates were quite similar
Fig. 9. Average probability of self-generated
thought cognitive components activating voxels
within 4 resting-state networks (Yeo et al. 2011).
The naming of the four resting-state networks
followed the convention of previous literature
(Kong et al., 2018; Li et al., 2019). Default C
resting-state network was primarily activated by
component C1, while the temporal parietal
resting-state network was primarily activated by
component C2. On the other hand, Default A and
B resting-state networks were preferentially acti-
vated by component C2.



Fig. 11. Co-activation patterns involving the
inferior frontal junction (IFJ). (A) Bayesian In-
formation Criterion (BIC) plotted as a function of
the number of estimated co-activation patterns.
BIC peaks at 3 co-activation patterns. (B) 3-coac-
tivation-pattern model estimates for the IFJ.
Format follows Fig. 7. “(C)” and “(O)” indicate
“covert” and “overt” respectively. “Mon”, and
“Disc” are short for “monitor” and “discrimina-
tion” respectively. “Count/Calculate” is short for
“Counting/Calculation”. “WCST” is short for
“Wisconsin Card Sorting Test”. The left IFJ is
delineated by the black boundary in the left
hemisphere.

Table 1
Spatial locations of activation foci within the IFJ. Each row of the table shows the
mean (standard deviation) of the coordinates of the activation foci (within IFJ)
reported by the top 3 experiments with the highest Pr (co-activation pattern j
experiment) for each of the top three tasks associated with each co-activation
pattern falling inside the IFJ. See Fig. S4 for volumetric slices illustrating the
locations of the activation foci within the IFJ. Across the 3 co-activation patterns,
the mean coordinates of the top experiments do not differ by more than 2.5 mm
in any dimension, suggesting that the co-activation patterns were not fraction-
ating the IFJ.

x/mm y/mm z/mm

Co-activation pattern C1 �40.33 (1.80) 3.89 (3.55) 30.67 (4.21)
Co-activation pattern C2 �39.33 (3.16) 5.33 (4.92) 31.78 (5.45)
Co-activation pattern C3 �39.40 (4.60) 6.40 (5.68) 29.70 (4.64)

Fig. 12. Goodness of fit of the author-topic model for IFJ. The matrix represents
the correlations between IFJ's co-activation patterns (columns) and the average
activation maps of the top three tasks associated with each co-activation pattern
(rows). The top tasks of each co-activation patterns are shown in Fig. 11. The
diagonal values (average r¼ 0.75) were larger than off-diagonal values (average
r¼ 0.31), suggesting a good model fit.
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to the author-topic estimate. However, the spatial maps contained
negative values, which was inappropriate in the context of coordinate-
based meta-analysis.

Fig. S8 shows the ICA (ICA1-nilearn) estimate of 3 co-activation
patterns of left IFJ. However, the 3 independent components appeared
to fractionate the left IFJ into smaller territories (Fig. S8), suggesting a
degenerate solution to our problem, similar to the situation with the 5-
pattern author-topic estimate (Fig. S3). Furthermore, both the mixture
weights and spatial maps contained negative values, which were not
interpretable in the context of coordinate-based meta-analysis (Section
2.3.1).
152
4. Discussion

The author-topic model encodes the intuitive notion that behavioral
tasks recruited multiple cognitive components, supported by multiple
brain regions (Mesulam, 1990; Poldrack, 2006; Barrett and Satpute,
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2013). We have previously utilized the author-topic model for large-scale
meta-analysis across functional domains (Yeo et al., 2015; Bertolero
et al., 2015). By exploiting a recently developed CVB algorithm for the
author-topic model (Ngo et al., 2016), we show that the model can also
be utilized for small-scale meta-analyses focusing on discovering func-
tional sub-domains or task-dependent co-activation patterns.

A dominant approach for small-scale meta-analyses is ALE, which
seeks to find consistent activations across neuroimaging experiments
within a functional domain or mental disorder or seed region (also
known as MACM). ALE treats heterogeneity across experiments as noise.
By contrast, the author-topic model evaluates whether the heterogeneity
might be indicative of robust latent patterns within the data. We applied
the author-topic model to two applications: one on fractionating a
functional sub-domain and one on discovering multiple task-dependent
co-activation patterns.

In the first application, the author-topic model encoded the notion
that tasks involving self-generated thought might recruit one or more
spatially overlapping. cognitive components. The model revealed two
cognitive components that appeared to delineate two overlapping default
sub-networks, consistent with the hypothesized functional organization
of the default network (Andrews-Hanna et al., 2014). In the second
application, the author-topic model encoded the notion that experiments
activating a brain region might recruit one or more co-activation patterns
dependent on task contexts (McIntosh, 2000). In the current application,
the model revealed that the IFJ participated in three co-activation pat-
terns, suggesting that IFJ flexibly co-activate with different brain regions
depending on the cognitive demands of different tasks. Overall, our work
suggests that the author-topic model is a versatile tool suitable for both
small-scale and large-scale meta-analyses.

4.1. Cognitive components of self-generated thought

Self-generated thought is a heterogeneous set of cognitive processes
that includes inferring other people's mental states, dealing with chal-
lenging moral scenarios, understanding narratives, retrieving autobio-
graphical memories, internalizing semantic information, and mind-
wandering. These processes are characterized by an absence of external
stimuli, self-related, and often involve simulation or inferential reasoning
(Buckner et al., 2008; Spreng et al., 2009; Smallwood et al., 2011; Baird
et al., 2011; Prebble at al. 2013; Smallwood, 2013). Studies of tasks
involving self-generated thought have consistently found the activation
of the default network, suggesting its functional importance (Buckner
et al., 2008; Spreng et al., 2009; Andrews-Hanna et al., 2010a;
Andrews-Hanna, 2012; Gorgolewski et al., 2014; Callard and Margulies,
2014). Additionally, the default network has been fractionated into
sub-networks supporting different aspects of these stimulus independent
cognitive processes (Buckner et al., 2008; Uddin et al., 2009; Sestieri
et al., 2011; Andrews-Hanna et al., 2010b; Kim, 2012; Seghier and Price,
2012; Salomon et al., 2014; Bzdok et al., 2013).

The author-topic model revealed two cognitive components of self-
generated thought that appeared to fractionate the default network
(Fig. 7). The default network has been defined as the set of brain regions
that are more active during passive task conditions relative to active task
conditions (Shulman et al., 1997; Buckner et al., 2008). While there have
been multiple studies fractionating the default network (Andrews-Hanna
et al., 2010b; Mayer et al., 2010; Kim, 2011; Yeo et al., 2014; Humphreys
et al., 2015), the specific patterns of fractionation have differed across
studies. The spatial topography of components C1 and C2 in this paper
corresponded well to the previously proposed “medial temporal subsys-
tem” and “dorsal medial subsystem” respectively (Fig. 3A of Andrew-
s-Hanna et al., 2014; Andrews-Hanna et al., 2010b).

The first cognitive component C1 was strongly recruited by naviga-
tion and autobiographical memory tasks, suggesting its involvement in
constructive mental simulation based upon mnemonic content
(Andrews-Hanna et al., 2014). Constructive mental simulation is the
process of combining information from the past in order to create a novel
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mental representation, such as imagining the future (Buckner and Car-
roll, 2007; Hassabis and Maguire, 2007; Schacter et al., 2007). “Navi-
gation” tasks require constructive mental simulation to create a mental
visualization (“scene construction”) for planning new routes and finding
ways in unfamiliar contexts (Burgess et al., 2002; Byrne et al., 2007). On
the other hand, “Autobiographical Memory” tasks require constructive
mental simulation to project past experience (“constructive episodic
simulation”; Atance and O'Neill, 2001; Schacter et al., 2007) or previ-
ously acquired knowledge (“semantic memory”; Irish et al., 2012; Brown
et al., 2014) across spatiotemporal scale to enact novel perspectives.
Overall, cognitive component C1 seems to support the projection of self,
events, experiences, images and knowledge to a new temporal or spatial
context based upon an associative constructive process, likely mediated
by the hippocampus and connected brain structures (Moscovitch et al.,
2016; Christoff et al., 2016).

The second cognitive component C2 was strongly recruited by
narrative comprehension and theory of mind, suggesting its involvement
in mentalizing, inferential, and conceptual processing (Andrews-Hanna
et al., 2014). Mentalizing is the process of monitoring one's own mental
states or predicting others' mental states (Frith and Frith, 2003), while
conceptual processing involves internalizing and retrieving semantic or
social knowledge (Binder and Desai, 2011; Van Overwalle, 2009).
“Narrative Comprehension” engages conceptual processing to under-
stand the contextual settings of the story, and requires mentalizing to
follow and infer the characters' thoughts and emotions (Gernsbacher
et al., 1998; Mason et al., 2008). “Theory of Mind” tasks require the recall
of learned knowledge, social norms and attitudes to form a
meta-representation of the perspectives of other people (Leslie, 1987;
Frith and Frith, 2005; Binder and Desai, 2011). The grouping of Narrative
Comprehension and Theory of Mind tasks echoes the link between the
ability to comprehend narratives and the ability to understanding others'
thoughts in developmental studies of children (Guajardo and Watson,
2002; Slaughter et al., 2007; Mason et al., 2008).

The two cognitive components had high probability of activating
common and distinct brain regions. Both components engaged the pos-
terior cingulate cortex and precuneus, which are considered part of the
“core” sub-network that subserves personally relevant information
necessary for both constructive mental simulation and mentalizing
(Andrews-Hanna et al., 2014). The distinct brain regions supporting each
cognitive component also corroborated the distinct functional role of
each component. For instance, component C1, but not C2, had high
probability of activating the medial temporal lobe and hippocampus.
This is consistent with neuropsychological literaure showing that pa-
tients with impairment of the medial temporal lobe and hippocampus
retain theory of mind and narrative construction capabilities, while
suffering deficits in episodic memories and imagining the future (Has-
sabis et al., 2007; Rosenbaum et al., 2007, 2009; Race et al., 2011).

The cognitive components of self-generated thought estimated by the
author-topic model overlapped with default sub-networks A, B and C, as
well as the temporal parietal network from a previously published
resting-state parcellation (Yeo et al., 2011; Kong et al., 2018). The
components loaded differentially on the resting-state networks, thus
providing insights into the functions of distinct resting-state networks.
Although resting-state fMRI is a powerful tool for extracting brain net-
works, participants do not actively perform a task during resting-state
fMRI. Thus, coordinate-based meta-analysis can be used in conjunction
with resting-state fMRI to discover new insights into brain networks and
their functions (Seeley et al., 2007; Smith et al., 2009; Laird et al., 2011).

4.2. Co-activation patterns of the left IFJ

The inferior frontal junction (IFJ) is located in the prefrontal cortex at
the intersection between the inferior frontal sulcus and the inferior
precentral sulcus (Brass et al., 2005; Derrfuss et al., 2005). The IFJ has
been suggested to be involved in a wide range of cognitive functions,
including task switching (Brass and Von Cramon, 2002; Derrfuss et al.,
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2004, 2005), attentional control (Asplund et al., 2010; Baldauf and
Desimone, 2014), detection of conflicting responses (Chikazoe et al.,
2009a, b; Levy and Wagner, 2011), short-term memory (Zanto et al.,
2010; Sneve et al., 2013), construction of attentional episodes (Duncan,
2013) and so on. Using the author-topic model, we found that the IFJ
participated in three task-dependent co-activation patterns.

Co-activation pattern C1might be involved in some aspects of language
processing, such as phonological processing for lexical understanding.
Phonological processing is an important linguistic function, concerning
the use of speech sounds in handling written or oral languages (Wagner
and Torgesen, 1987; Poldrack et al., 1999; Friederici, 2002). The top
tasks associated with C1 were “Semantic Monitoring/Discrimination”,
“Covert Reading”, and “Phonological Discrimination” (Fig. 11B).
Inspecting the top three experiments recruiting these three tasks
(Tables S3–A) offered more insights into the functional characteristics of
co-activation pattern C1. The top “Semantic Monitoring/Discrimination”
experiments with the highest probability of recruiting co-activation
pattern C1 examined retrieval of semantic meaning (Thompson-Schill
et al., 1999; Wagner et al., 2001) and an experiment requiring lexical
perception and not just perception of elementary sounds (Poeppel et al.,
2004). The top “Covert Reading” experiments most strongly associated
with C1 identified a common brain network activated by both reading
and listening (Jobard et al., 2007), as well as language comprehension
across different media (Small et al., 2009), suggesting the involvement of
C1 in generic language comprehension. Among “Phonological Discrimi-
nation” experiments, C1 was most highly associated with experiments
engaging transcoding of phonological representation for semantic
perception (Xu et al., 2001; D�emonet et al., 1994). The language and
phonological processing interpretation was supported by C1's strong left
lateralization with high probability of activating classical auditory and
language brain regions, including the left (but not right) inferior frontal
gyrus and bilateral superior temporal cortex.

Co-activation pattern C2 might be engaged in attentional control,
especially aspects of task maintenance and shifting of attentional set.
Attentional set-shifting is the ability to switch between mental states
associated with different reactionary tendencies (Omori et al., 1999;
Konishi et al., 1998). The top three tasks most highly associated with C2
were “Counting/Calculation”, “Task Switching”, and “Wisconsin Card
Sorting Test” (Fig. 11B). Inspecting the top three experiments under the
top task paradigms provided further insights into the functional charac-
teristics of co-activation pattern C2 (Tables S3–B). The top “Counting/-
Calculation” experiments most strongly recruiting co-activation pattern
C2 involved switching of resolution strategies in executive function. For
example, one experimental contrast seeks to isolate demanding mental
calculation but not retrieval of numerical facts (Zago et al., 2001; Rivera
et al., 2002), suggesting C2's involvement in the selection and application
of strategies to solve arithmetic problems. The top “Task Switching”
experiments most strongly associated with C2 involved the switching of
mental states to learn new stimulus-response or stimulus-outcome asso-
ciations (Omori et al., 1999; Nagahama et al., 2001; Sylvester et al.,
2003). C2 was also strongly expressed by “Wisconsin Card Sorting Test”
(WCST) experiments, which required attentional set-shifting to change
behavioral patterns in reaction to changes of perceptual dimension
(color, shape, or number) upon which the target and reference stimuli
were matched (Berman et al., 1995; Konishi et al., 2002; Konishi et al.,
2003). Overall, the attentional control interpretation of co-activation
pattern C2 is supported by C2's high probability of activating classical
attentional control regions, such as the superior parietal lobule and the
intra-parietal sulcus, although there is a clear lack of DLPFC activation.

Co-activation pattern C3 might be engaged in inhibition or response
conflict resolution. Conflict-response resolution is a central aspect of
cognitive control, which involves monitoring and mediating incongruous
response tendencies (Pardo et al., 1990; Braver et al., 2001; Barch et al.,
2001). Co-activation pattern C3 is most strongly recruited by experi-
ments utilizing “Go/No-Go”, “Encoding” and “Overt Word Generation”
tasks (Fig. 11B). Closer examination of the top three experiments under
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each task paradigm provided further insights into the functional char-
acteristics of C3 (Tables S3–C). The top experiments utilizing “Go/N-
o-Go” required the monitoring, preparing and reconciling of conflicting
tendencies to either giving a “go” or “stop” (no-go) response (Chikazoe
et al., 2009a, b, Sim~oes-Franklin et al., 2010; Kawashima et al., 1996). It
might be surprising at first glance that the “Go/No-Go” task was grouped
together with “Encoding” and “Overt Word Generation” tasks. However,
the top experiments utilizing the “Encoding” and “Overt Word Genera-
tion” task all required subjects to make competing decisions
(Tables S3–C). The top “Encoding” experiments most strongly associated
with C3 required selective association of to-be-learnt items with existing
memory or knowledge organization for effective enduring retention of
new information (Kapur et al., 1996; Callan and Schweighofer, 2010;
Mickley and Kensinger, 2009). The top experiments utilizing the “Overt
Word Generation” task required subjects to make competing decision,
such as inhibiting verbalization of wrong words in verbal fluency task
(Baker et al., 1997; Ravnkilde et al., 2002) or inhibiting a predominant
pattern (regular past-tense verbs) in favor of generating less conventional
forms (irregular past-tense verbs) (Desai et al., 2006). Overall, the inhi-
bition or response conflict interpretation of co-activation pattern C3 is
supported by C3's high probability of activating classical executive
function regions, including the bilateral dorsal lateral prefrontal cortex.

The intriguing location of the left IFJ and its functional heterogeneity
suggests the role of IFJ as an integrative hub for different cognitive
functions. For example, the IFJ has been suggested to consolidate infor-
mation streams for cognitive control from its bordering brain regions
(Brass et al., 2005). The involvement of the IFJ in three task-dependent
co-activation patterns supported the view that the IFJ orchestrates
different cognitive mechanisms to allow their operations in harmony.

5. Conclusion

Heterogeneities across neuroimaging experiments are often treated as
noise in coordinate-based meta-analyses. Here we demonstrate that the
author-topic model can be utilized to determine if the heterogeneities can
be explained by a small number of latent patterns. In the first application,
the author-topic model revealed two overlapping cognitive components
subserving self-generated thought. In the second application, the author-
topic revealed the participation of the left IFJ in three task-dependent co-
activation patterns. These applications exhibited the broad utility of the
author-topic model, ranging from discovering functional subdomains or
task-dependent co-activation patterns.
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Appendix
Pseudo-code Function
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(1) Read the input activation foci and task labels
 CBIG_AuthorTopic_PreprocessInput

(2) Initialize the model's hyperparameters
 CBIG_AuthorTopic_SetupParameters

(3) Repeat for N¼ 1000 re-initializations

(a) Initialize the variational parameters ϕ
 CBIG_AuthorTopic_InitializeParams

(b) Update the variational parameters ϕ (Eq. 14 in Supplemental S1)

- Approximate EqðN�ef

� � c �Þ and VarqðN�ef
� � c �Þ
 CBIG_AuthorTopic_ComputeVariationalTerm__N_c
- Approximate EqðN�ef
� � cvef Þ and VarqðN�ef

� � cvef Þ
 CBIG_AuthorTopic_ComputeVariationalTerm__N_cv
- Approximate EqðN�ef
� t � �Þ and VarqðN�ef

� t � �Þ
 CBIG_AuthorTopic_ComputeVariationalTerm__N_t
- Approximate EqðN�ef
� tc � Þ and VarqðN�ef

� tc � Þ
 CBIG_AuthorTopic_ComputeVariationalTerm__N_tc
- Update the variational parameters ϕ (Eq. 14 in Supplemental S1)

- Recompute the variational log likelihood. If it converges, go to step (3c), otherwise repeat from step (3b)

(c) Update the model parameters θtc and βcv (Eq. 16 and 17 in Supplemental S1)
 CBIG_AuthorTopic_EstimateParams
Pseudo-code of the Collapsed Variational Bayes (CVB) algorithm for estimating the author-topic model's parameters. The left column outlines the
main steps of the algorithm. The right column denotes the functions in the source code that correspond to each step. The source code of the CVB al-
gorithm and the input file of the self-generated thought dataset are available at https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/
meta-analysis/Ngo2019_AuthorTopic. Note that steps (2) and (3) can be called by a single function CBIG_AuthorTopic_RunInference.
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