Provided for non-commercial research and education use. Not for reproduction, distribution or commercial use.

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier's archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/copyright

Neuroscience and Biobehavioral Reviews 34 (2010) 1178-1194

Contents lists available at ScienceDirect

Review

Neuroscience and Biobehavioral Reviews

journal homepage: www.elsevier.com/locate/neubiorev

Reliable differences in brain activity between young and old adults: A quantitative meta-analysis across multiple cognitive domains

R. Nathan Spreng^{a,*}, Magdalena Wojtowicz^b, Cheryl L. Grady^{c,d,**}

^a Department of Psychology, Harvard University, Cambridge, MA, USA

^b Department of Psychology, Dalhousie University, Halifax, NS, Canada

^c Rotman Research Institute, Bathurst St, Baycrest Centre, Toronto, ON M6A 2E1, Canada

^d Departments of Psychiatry & Psychology, University of Toronto, Toronto, ON, Canada

ARTICLE INFO

Article history: Received 16 October 2009 Received in revised form 7 January 2010 Accepted 20 January 2010

Keywords: Aging Neuroimaging Activation likelihood estimation Task positive network Dorsal attention Perception Encoding Retrieval Executive function Working memory

ABSTRACT

We conducted a systematic review of the neuroimaging literature examining cognition in old and young adults and quantified these findings in a series of meta-analyses using the activation likelihood estimation technique. In 80 independent samples, we assessed significant convergent and divergent patterns of brain activity across all studies; where task performance was equated or different between age groups; and in four specific cognitive domains (perception, memory encoding, memory retrieval and executive function). Age differences across studies predominantly involved regions within the 'task-positive network' of the brain, a set of interconnected regions more than young adults. When performance was equivalent, old adults engaged prefrontal cortex; poorly performing old adults engaged right prefrontal cortex. Young adults engaged occipital regions more than old adults, particularly when performance was unequal and during perceptual tasks. No age-related differences were found in the parietal lobes. We discuss the reliable differences in brain activation with regards to current theories of neurocognitive aging.

© 2010 Elsevier Ltd. All rights reserved.

Contents

1.	Intro	duction	1179
2.	ALE n	nethod	1180
	2.1.	Selection of studies	1180
	2.2.	Creation of ALE maps	1180
3.	Resul	ts	1183
	3.1.	Combined ALE results	1183
	3.2.	Young and old ALE difference results	1183
		3.2.1. Differences across all studies	1183
	3.3.	Age differences when performance was equivalent	1183
	3.4.	Differences when performance was unequal	1183
	3.5.	Domain specific results.	1184
	3.6.	Perception	1184
	3.7.	Memory encoding	1185
	3.8.	Memory retrieval	1185
	3.9.	Executive function	1185
4.	Discu	ission	1186
	4.1.	Anterior cortex	1186

* Corresponding author at: Harvard University, William James Hall, 33 Kirkland St, Cambridge, MA 02138, USA. Tel.: +1 617 495 9031; fax: +1 617 496 3122.

** Corresponding author at: Rotman Research Institute, Bathurst St, Toronto, ON M6A 2E1, Canada. Tel.: +1 416 785 2500x3525; fax: +1 416 785 2862. *E-mail addresses:* nathan.spreng@gmail.com (R.N. Spreng), cgrady@rotman-baycrest.on.ca (C.L. Grady).

R.N. Spreng et al.	/Neuroscience	and Biobehavioral	Reviews 34	(2010)	1178-1194
--------------------	---------------	-------------------	------------	--------	-----------

4.2.	Posterior cortex	1189
4.3.	Neurocognitive aging	1189
Ackno	owledgements	1190
Refer	ences	1192

1. Introduction

In recent years, functional neuroimaging has become an ever more popular tool to study the neural correlates of differences in cognitive function between young and old adults. When brain activity in young and old adults is compared on a task, there are at least three possible outcomes in any given brain area: (1) young and old groups could have equivalent brain activity, (2) old adults could show less activity, or (3) old adults could show greater activity. Equivalent activity is generally considered evidence for spared function in the elderly, although if performance is lower in the old group this may indicate less effective use of neural resources (Zarahn et al., 2007). Reduced activity in the elderly can reasonably be assumed to reflect a reduced level of functioning, particularly when accompanied by poorer performance on the task (e.g., Anderson et al., 2000; Grady et al., 2006; Rypma and D'Esposito, 2000). Increased recruitment of brain regions in old compared to young participants is the most intriguing result, but poses a major challenge of interpretation. For example, over-recruitment of brain activity in old adults could potentially be due to compensation, inefficiency in utilization of some neural processes, or a reduction in the differentiation and/or specificity of response during a given task (for reviews, see Cabeza, 2002; Grady, 2008; Rajah and D'Esposito, 2005).

This growing literature on the neuroscience of cognitive aging has suggested that there are some reliable age-related differences in brain activity found across studies. From the earliest experiments in this field, which involved perceptual matching tasks, it was clear that age differences in brain activity could take the form of both decreases and increases of activity in old adults compared to their younger counterparts, with increases found in prefrontal cortex and decreases found in occipital regions (Grady et al., 1994).

Age-related changes in neural activity have been observed across numerous cognitive domains, including perception (e.g. Grady et al., 1994), memory encoding (e.g. Madden et al., 1996), memory retrieval (e.g. Schacter et al., 1996), working memory and executive functions (e.g. Grady et al., 1998). Studies of perception often involve the presentation of a stimulus, paired with a decision about that stimulus. Encoding information is not dissimilar to perception; however, entails later verifying the retention of perceived information. Memory retrieval, on the other hand, involves a test of previously learned information. Finally, working memory and executive functions are examined by a diversity of tasks involving the maintenance and manipulation of information online or response inhibition and selection according to task goals.

Many subsequent studies have replicated age-related increases in frontal cortex (e.g., Cabeza et al., 2002; Madden et al., 1999; Morcom et al., 2003; Nielson et al., 2002; Rosen et al., 2002) and decreases in visual areas (Anderson and Grady, 2004; Davis et al., 2008; Madden et al., 2002, 2004). Increased activity in old adults initially led to the suggestion that additional frontal activity can compensate for reduced activity elsewhere in the brain, providing a benefit to cognitive performance (Cabeza et al., 1997; Grady et al., 1994), and much of the subsequent work has continued to explore this idea. When old adults recruit a brain region or regions that are not active in young adults, but have performance equivalent to that seen in young adults, then the over-recruitment has generally been interpreted as compensatory (Cabeza et al., 1997; Grady et al., 1994, 2008; Reuter-Lorenz et al., 2000).

However, other interpretations of over-recruited activity in old adults are also possible. For example, inefficient use of brain activity in old adults has been invoked when there is no age difference in behavior but old adults have more activity in taskrelated brain regions than do young adults (Morcom et al., 2007; Zarahn et al., 2007). That is, old adults may need to allocate greater neural resources in general, but this may not necessarily translate into better task performance. However, the possibility that this engagement of new areas represents non-selective recruitment or dedifferentiation in the elderly cannot be ruled out entirely (Logan et al., 2002). Indeed, some recent work suggests that overrecruitment of prefrontal cortex is found primarily in old adults who perform poorly on the task at hand (Colcombe et al., 2005; Duverne et al., 2009; Grady et al., in press). Finally, perhaps the strongest evidence for compensation occurs when old adults recruit brain activity that is not seen in young adults, and the engagement of this area or areas is directly correlated with better performance only in the old adults and not in the young (Grady et al., 2002, 2005, 2003; McIntosh et al., 1999; Stern et al., 2005). This would indicate the recruitment of a unique pattern of neural activity that supports task performance in an age-specific manner. At the current time, it seems likely that at least some age-related differences in brain activity are compensatory, but certainly one cannot make this claim for all such differences, and it is not clear how widespread this phenomenon would be across tasks or cognitive domains.

1179

There have been a few reviews and meta-analyses attempting to identify common trends across papers in the aging neuroscience literature (Anderson and Grady, 2001, 2004; Cabeza, 2002; Grady, 1999; Park and Reuter-Lorenz, 2009; Rajah and D'Esposito, 2005; Reuter-Lorenz and Lustig, 2005). Although these have shown what appear to be relatively robust findings across independent studies, primarily related to memory, there has not yet been a metaanalysis using quantitative methods to identify common agerelated changes across all the cognitive domains that have been studied. It seemed to us that sufficient data had appeared in the literature for this to be a worthwhile undertaking. In addition, reliable findings across studies could provide information about areas of the brain that are most vulnerable to the effects of aging (i.e., those with age-related reductions in activity) and those that might show the most plasticity (i.e., those with age-related increases in activity) in response to these effects.

In this paper we have carried out a quantitative meta-analysis using the activation likelihood estimation (ALE) approach for neuroimaging data (Laird et al., 2005; Turkeltaub et al., 2002). Because we were looking for age differences that are reliable across cognitive domains, we expected involvement of brain areas that mediate cognitive processes underlying multiple types of tasks. An example of such a set of brain areas is the so-called 'task-positive network' (Fox et al., 2005; Toro et al., 2008), or TPN. The TPN is active during a wide variety of externally-driven cognitive tasks, and consists of regions thought to be involved in attention and cognitive control (e.g., Corbetta et al., 2008; D'Esposito et al., 1995; Dosenbach et al., 2007; Dove et al., 2006; Vincent et al., 2008). The regions generally considered to be part of the network are: (1) dorsolateral prefrontal cortex (DLPFC), rostrolateral prefrontal cortex (RLPFC) and anterior insula/frontal operculum (aIfO); (2) superior parietal cortex near the intraparietal sulcus (IPS) and anterior inferior parietal lobes (aIPL, particularly the supramar-

ginal gyri); (3) frontal eye fields (FEF); (4) supplementary motor area (SMA and/or preSMA); (5) ventral occipital cortex (vOC); and (6) postcentral gyrus (PCS) (Fox et al., 2005; Toro et al., 2008). A different network, called the 'default network', increases its activity when people are in a quiescent state and attending to internally driven cognitive processes, and reduces its activity when an external task-based focus is required (Gusnard et al., 2001; McKiernan et al., 2003; Raichle et al., 2001; Shulman et al., 1997). Recently it was shown that the degree of anti-correlation between the task positive and default networks is related to performance on cognitive tests (Kelly et al., 2008), suggesting that the balance between the default and task positive networks is critical for effective cognitive processing. Several studies have found that old adults show less reduction of default mode activity during cognitive tasks, and reduced functional connectivity in this network, relative to young adults (Grady et al., 2006; Lustig et al., 2003; Miller et al., 2008). In contrast, a recent study indicated that old adults have greater recruitment of the TPN across several cognitive domains, and preserved functional connectivity, relative to young adults (Grady et al., in press). Over-recruitment of the TPN as a whole is consistent with reports of increased activity in prefrontal and parietal regions in old relative to young adults during both episodic memory retrieval (Morcom et al., 2007) and attention (Townsend et al., 2006) tasks.

In the current study we sought to identify stable regions of brain activity engaged across tasks and to identify differences in reliable brain activity related to age. To begin, we first identified brain regions reliably involved across all studies and participants. Similar to a previous meta-analysis (Toro et al., 2008), we predicted that reliable task-related activation would be found in regions consistent with the TPN. We then identified brain regions where young and old adults had differences in activity and assessed the overlap between these areas and those active for both age groups. This overlap would indicate that old adults have reliable changes in engagement of the TPN, or a subset of the nodes of the TPN. Age-related reductions would suggest vulnerability in more regional or specific processes, whereas increased activity in old adults might indicate age-specific adaptations or reorganizations of function. In order to identify neural activity associated with changes in cognition with advancing age, we also examined age differences in brain activity related to task performance. For these analyses, we divided tasks where young and old adults had equivalent performance, indicative of more successful cognitive aging, from tasks where old adults performed less well than the young group, indicative of less successful cognitive aging. More activity in old adults who perform as well as their younger counterparts would suggest that these regions, and the processes that they mediate, are more likely to be effective in supporting cognitive function. In contrast, age differences between young adults and poorer performing old adults might indicate those types of processes and brain regions that are more vulnerable in aging, or those processes that are less effective at supporting cognitive function in the elderly. A third set of analyses examined studies within each cognitive domain, including perception, memory encoding, memory retrieval and executive function. The aim of these analyses was to shed light on the functions of the regions showing age differences across cognitive domains.

2. ALE method

2.1. Selection of studies

Neuroimaging studies of cognitive aging were selected using a systematic search process. Peer-reviewed articles, published in English between January 1982 and July 2009, were selected from the search results of three separate databases: Medline, PsycInfo and

Science Citation Index. Searches were conducted using the following terms: (1) keywords: "age" <OR> "aging" <OR> "ageing" <OR> "age-related" <OR> "older adults" <OR> "adult life-span"; AND (2) Keywords: "neuroimaging" <OR> "cerebral blood flow" <OR> "fMRI" <OR> "functional magnetic resonance imaging" <OR> "PET" <OR> "positron emission tomography"; AND (3) Population: "human". As a result, 2798 unique papers were found.

Only studies that reported both healthy young and healthy old adult group results were included. Independent group analysis results were extracted from 55 studies. We also included results from 25 studies that reported within- and between-group analysis results (i.e. combined Young/Old, Young > Old and Old > Young). Combined task effects were duplicated for each group and task by age interaction coordinates were delegated to each respective age group. Theoretical papers and reviews were excluded. Studies that reported combined group results and a region-of-interest analysis (e.g., Rypma and D'Esposito, 2000), reported only brain-behavior correlations (e.g., Springer et al., 2005) or did not report activation foci as 3D coordinates in stereotaxic space (e.g., Hazlett et al., 1998) were excluded because these studies could not be meaningfully analyzed with ALE. For studies that contained multiple non-independent contrasts, the first contrast of interest was included in order to limit the contribution of any one set of participants to the pool of foci. Likewise, subsequent papers reporting results from the same group of participants on a different task were also excluded (e.g., Dennis et al., 2008). Deactivation coordinates were omitted, as were studies that examined patterns of deactivation (e.g., Daselaar et al., 2005). For studies containing multiple independent samples, peak activation foci from each sample were included (e.g., Grady et al., 1994). The reference lists of included papers were searched for additional studies that fit these criteria. In total, 77 appropriate papers were included; three papers reported two independent samples rendering 80 total experiments for both young and old adults.

Tables 1a and 1b contains a list of all original studies, including details of each experiment, participants, and imaging modality. The equivalence of behavioral performance refers to task based measures such as accuracy and not reaction times, which differed between young and old in nearly all cases. Forty-four experiments did not report significant differences between young and old groups in task performance whereas 36 experiments reported significantly poorer performance in old adults.

2.2. Creation of ALE maps

The ALE method provides a voxel-based meta-analytic technique for functional neuroimaging data (Laird et al., 2005; Turkeltaub et al., 2002). The software (BrainMap GingerALE v1.1) computes statistically significant concordance in the pattern of brain activity across any number of independent experiments. ALE maps are derived based on foci of interest, which comprise statistically significant peak activation locations from multiple studies. GingerALE can also compute statistically significant differences in the pattern of brain activity between two sets of data from several independent experiments.

Twelve separate ALE analyses were conducted, each yielding an ALE map and corresponding cluster report: (A) reliable brain activity combined across all studies in both young and old adults to identify TPN regions; (B) differences in brain activation patterns in young and old adults *across all studies*; (C) differences in brain activity between young and old adults in studies where performance was *equivalent*; (D) differences in brain activity between young and old adults in studies where performance was *unequal*; and (E-L) *Domain-specific* patterns of brain activity common to young and old adults and those that reliably differentiated between groups. For these analyses we used the studies grouped into the domains of perception, memory encoding, memory

R.N. Spreng et al./Neuroscience and Biobehavioral Reviews 34 (2010) 1178–1194

Table 1a

Details of included studies. For complete reference, see appendix. See original papers for additional information. Performance refers to task based measures such as accuracy (not reaction time). Exp., experiment; fMRI, functional magnetic resonance imaging; PET, positron emission tomography.

v v No. No. No. No. No. No. No. 1 Automova 200 Memery: incoding: - MRI 10 2.4.6 3.4 10 6.5.0 3.1 10 6.5.0 3.1 10 6.5.0 3.1 10 6.5.0 3.1 10 6.5.0 7.1	Exp.	First author	Year	Domain	Performance	Modality	Young		Old			
Image: stand							N	Ago	Foci	N	Ago	Foci
1 Anderson Bernory: incoding PET 12 24.4 23.0 13 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th>IN</th><th>Age</th><th>FOCI</th><th>IN</th><th>Age</th><th>FOCI</th></t<>							IN	Age	FOCI	IN	Age	FOCI
2 Autonom Memory Introduction - MRI 10 2.1.5 3.4 7.0 0.2.1.5 3 Column 2 Second Pert 1.2 2.4.4 2.4.4 1.5 2.4.4 </td <td>1</td> <td>Anderson</td> <td>2000</td> <td>Memory: Encoding</td> <td>≠</td> <td>PET</td> <td>12</td> <td>24.4</td> <td>23</td> <td>12</td> <td>68.5</td> <td>21</td>	1	Anderson	2000	Memory: Encoding	≠	PET	12	24.4	23	12	68.5	21
3 Beckman 1977 Memory Requirements - PET 7 24.3 3 15 7 9 6.3 5 Calcal 2000 Memory Requirements - PET 12 22.5 13 12 6.3 13 5 Calcal 1907 Memory Requirements - PET 12 22.5 13 12 6.6 7.5 7 6 Calcal 2007 Precediation - PET 12 22.5 13 12 6.7 7.5 7.5 7.5 11 Dacklar 2000 Memory Recoling - PRI 13 22.5 14 14 6.8 7.5 7.5 12 Dacklar 2000 Memory Recoling - PRI 13 22.5 14 8.8 6.6 7.5 7.5 13 Dacklar 2000 Memory Recoling - PRI 13 22.5 14 8.8	2	Antonova	2009	Memory: Encoding	,' ≠	fMRI	10	23.6	34	10	72.1	31
4 Imagendent 2000 Memory: letricul 7 PRT 2 2 3 1 2 0 0 6 Calcer 2000 Memory: letricul 7 PRT 2 2 1 1 0	3	Backman	1997	Memory: Retrieval	/ 	PET	7	243	3	7	63.4	5
S Calaran Memory Introduct P PRT 12 24.2 5.4 12 0.20 13 12 0.20 13 12 0.20 13 12 0.20 13 12 0.20 13 12 0.20 13 12 0.20 13 12 0.20 13 12 0.20 13 12 0.20 13 12 0.20 13 12 0.20 13 12 12 0.20 13 12 13 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 <th14< th=""> 14 <</th14<>	4	Bergerbest	2009	Memory: Repetition priming	=	fMRI	16	28.5	3	15	78.7	7
Cabera Doole Parently Number Memory - NMI 20 2.2.4 13 20 7.3.5 7.3 <th7.3< th=""> <th7.3< td="" th<=""><td>5</td><td>Cabeza</td><td>2000</td><td>Memory: Retrieval</td><td>¥</td><td>PET</td><td>12</td><td>24.7</td><td>5</td><td>12</td><td>68.6</td><td>6</td></th7.3<></th7.3<>	5	Cabeza	2000	Memory: Retrieval	¥	PET	12	24.7	5	12	68.6	6
7 Cabba: Description - PET 12 2.27 13 2.7 7.55 13 8 Cerf Countie 2000 Perreption - MRI 10 2.33 12 10 6.64 2.3 10 Deschar 2000 Merrop: Encising - MRI 10 2.33 12 10 6.64 2.4 11 Deschar 2000 Merrop: Encising - MRI 11 2.32 12 10 6.64 2.4 12 Deschar 2008 Merrop: Encising - MRI 14 2.32 17 18 6.64 2.4 13 Deschar 2008 Merrop: Encising - MRI 12 2.3 13 8.64 7.1 15 10 Deschar 2008 Merrop: Encising - MRI 13 2.3 13 14 14 10 Deschar 2008 Merrop: Encising<	6	Cabeza	2004	Executive/Working Memory	=	fMRI	20	22.6	15	20	70.3	23
B Carl-Bucatisti 2003 Parageton Number - Nath 6 2.25 1.2 6 7.25 9 10 Colcomb 2005 Executive - NBR 200 2.3.1 2 4 6 6.7.5 3 11 Data 2005 Executive - NBR 14 2.3.1 2.4 40 6.7.5 3 13 Davis 2008 Memory: Execution - NBR 14 2.2.2 15 6.6.3 1.4 0.6.3 1.5 1.5 1.5	7	Cabeza	1007	Memory: Encoding	_	DET	12	22.0	13	12	70.5	13
0 Ches Test prime - NRI 20 21.3 4 70 66.3 7 11 Dacelar 2003 Matter - NRI 20 23.5 2 4 67.5 3 11 Dacelar 2003 Matter - NRI 20 23.5 2 4 40 66.4 2 11 Dacelar 2003 Matter Find frag - NRI 16 23.5 2 4 4 66.4 2 12 Dacitar 2007 Memory Encoding - NRI 16 23.5 3 3 4 4 66.7 15 13 Dacitar 2009 Memory Encoding - PT 10 13 23.2 10 11 23.5 11 23.5 13 23.5 13 23.5 13 23.5 13.5 23.5 13.5 23.5 13.5 13.5 13.5	8	Carf Ducastal	2003	Perception	_	fMPI	6	25.7	25	6	78.5	0
D Construct Description Notes Notes Description	0	Chao	2005	Perception	Ŧ	EMDI	20	20.5	25	17	76.5	9
11 Discription 2 Note 2 2 2 4 40 6 4 1 12 Darkis 2008 Memory: Fracing - Null 14 222 7 15 662.4 4 13 Davis 2008 Memory: Fracing - Null 14 222.2 15 8 66.4 4 15 Diciolano 2001 Rerroy: Fracing - Null 8 2.5 13 8 66 4 16 Diciolano 2008 Memory: Fracing - Null 10 2.5 8 13 6.6 12 17 Decide 208 Memory Enricing - PTT 13 2.5 10 13 6.7 14 13 2.5 10 10 7.5 12 13 14 7.5 12 13 14 7.5 12 13 14 14 14 14	9	Cilee	2006	Free susting	=	IIVIKI OMDI	20	21.5	4	17	66.9	0
11 Dischar 2011 More presental Perception - Ref 2 3 3 4 40 B 12 40 11 Dennis 2007 Memory: Encoding - MRI 16 22.3 17 66.3 1.4 12 Dennis 2007 Memory: Encoding - MRI 16 23.5 1.8 1.3 66.4 2.1 18 Darter 2008 Memory: Encoding - MRI 16 2.1 1.4 46.6 7.7 15 19 Dericity Working Memory - PET 13 2.2. 1.4 4.9 7.7 15 22.4 Free 2005 Decicity Working Memory - PET 13 2.2. 1.0 1.0 7.7 1.1 23.4 Grady 2005 Memory: Encoding - PET 13 2.2. 1.6 1.6 1.6 1.4 1.6 1.5 1.6 1.6	10	Colcombe	2005	Executive	=	INIRI	20	23.5	2	40	67.5	3
12 Discard 2000 Memory: Encoding	11	Daselaar	2003	Motor	=	INIRI	26	32.4	18	40	66.4	24
11 Davit 2008 Memory: Excised & Perception - MBB 14 22.0.1 17 15 6.6.2 17 16 DiGiolano 2001 Excurity: - MBB 18 2.5.1 1 8 0.6.1 16 DiGiolano 2001 Excurity: - MBB 1 1 2.5.1 1 8 16 0.5.7 18 Darte 2008 Memory: Excised - MBB 17 2.5.1 11 13 6.6 2.7 15 21 Ferandes 2006 Memory: Excised - PET 13 2.5.2 11 13 6.5 15 13 6.5 15 13 6.5 15 13 6.5 15 13 6.5 15 13 6.5 14 15 16 14 15 15 16 16 16 16 16 16 16 16 16 16 <t< td=""><td>12</td><td>Daselaar</td><td>2003</td><td>Memory: Encoding</td><td>=</td><td>fMRI</td><td>17</td><td>32.7</td><td>4</td><td>19</td><td>66.4</td><td>4</td></t<>	12	Daselaar	2003	Memory: Encoding	=	fMRI	17	32.7	4	19	66.4	4
14 Dennis 2007 Memory: Encoding DMR 16 2.15 7 18 17 69.3 14 15 Derker 2008 Reward Procesing DMR 17 0 15 15 18 13 13 13 14 6.3 14 6.3 14 6.3 15 17 15 16 Durente 2008 Memory: Fartrical - DMR 16 2.1 13 6.3 18 17 41-3 21 Encortive Working Memory - PET 13 2.3 11 70 13 2.3 11 70 13 2.3 11 70 13 2.3 13 13 70 13 2.3 13 13 70 13 2.3 14 15 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 <td>13</td> <td>Davis</td> <td>2008</td> <td>Memory: Retrieval & Perception</td> <td>=</td> <td>fMRI</td> <td>14</td> <td>22.2</td> <td>7</td> <td>15</td> <td>69.2</td> <td>6</td>	13	Davis	2008	Memory: Retrieval & Perception	=	fMRI	14	22.2	7	15	69.2	6
15 Dermis 2008 Memory: Enroling r DMB 14 14 14 17 18 66 4.7 18 Datate 2008 Memory: Retrieval r DMB 17 2.35 18	14	Dennis	2007	Memory: Encoding	=	fMRI	16	23.5	18	17	69.3	14
16 Diciulamo 2001 Reward Processing \neq MRI 8 25 3 8 99 77 19 Devente 2009 Memory Retrieval - MRI 16 21.1 81.0 16 21.1 81.0 16 21.1 81.0 16 81.1 17.1 18.1 19 Devente 2009 Memory Retrieval - PET 13 22.0 10 13 65.1 13 24 Grady 1994 Perception ding - PET 13 22.5 16 10 70 11 24 Grady 1994 Perception ding - PET 13 22.5 16 10 70 11 24 Grady 2005 Perception ding Memory - PET 13 22.5 18 8 18 8 18 8 18 8 18 18 18 18 18 18 <t< td=""><td>15</td><td>Dennis</td><td>2008</td><td>Memory: Encoding</td><td>≠</td><td>fMRI</td><td>14</td><td>19.4</td><td>7</td><td>14</td><td>68.4</td><td>2</td></t<>	15	Dennis	2008	Memory: Encoding	≠	fMRI	14	19.4	7	14	68.4	2
17 Decker 2008 Revent Processing - MRI 20 25 4 13 66 2 18 Dustric 2008 Memory: Kinching Memory - MRI 10 18-42 8 12 13-87 15 19 Descrit 1999 Memory: Kinching Memory - MRI 12 21-87 13 72-18 72-18 72-18 72-18 72-18 72-18 72-18 72-18 72-18 72-18 72-18 72-18 72-18 <	16	DiGirolamo	2001	Executive	\neq	fMRI	8	25	31	8	69	47
18 Duarte 2008 Memory: Entimal MMB 10 21 8 14 8 15 7 20 Exponito 1998 Exerctive/Working Memory PT 20 8 21 43-50 6 15 23 Grady 1998 Exerctive/Working Memory - PET 13 23 0 11 70 13 24 Grady 1984 Preception - PET 13 22 16 0 14 14 24 Grady 1984 Preception - PET 13 22.5 16 0 6.5 11 25 Grady 2000 Memory: Encoding - PET 13 22.5 18 16 6.5 18 26 Grady 2000 Memory: Encoding - PET 12 22.4 12 25 6.5 14 21 Grady 20	17	Dreher	2008	Reward Processing	=	fMRI	20	25	4	13	66	2
10 Duverne 2009 Metrony: Retrieval - PRI 0 10 11 71 15 21 Fernandes 2008 Menory: Retrieval - PRI 12 18-42 8 11 712 11 21 Fernandes 2008 Menory: Retrieval - PRI 12 23.2 10 10 10 11 24 Grady 1984 Preception - PRI 13 25.8 10 16 6.66 11 25 Grady 2008 Menory: Retrieval - PRI 13 22.8 13 6.66 14 14 26 Grady 2006 Menory: Encline - PRI 13 22.8 18 7.3 12 27 Grady 2005 Menory: Encline - PRI 14 23 13 7.0 32 12 28 Grady 2005 Menory: Encline	18	Duarte	2008	Memory: Retrieval	≠	fMRI	17	23.6	18	14	62.7	16
20Exposition1998Descutive/Morking Memory \div PET2018-20.82141-80.651521Frao2005Executive/Morking Memory-PET1327.21213651523Gady2904Memory: Encluding-PET1327.510106511240Gady19940Preception-PET1327.51066.41424Gady2005Memory: Enclusion-PET1327.51066.41424Gady2005Memory: Enclusion-PET1327.51066.41425Gady2005Memory: Enclusion-PET1327.5131066.41426Gady2005Memory: Enclusion-PET1327.5131327.5131327.5131327.5131327.51314141421.326.514141421.326.514141421.326.514141421.326.514 <td>19</td> <td>Duverne</td> <td>2009</td> <td>Memory: Retrieval</td> <td>=</td> <td>fMRI</td> <td>16</td> <td>21</td> <td>9</td> <td>16</td> <td>71</td> <td>15</td>	19	Duverne	2009	Memory: Retrieval	=	fMRI	16	21	9	16	71	15
21 Frankes 2006 Merry: Entrieval - PHT 13 23. 11 71.2 13 71.2 13 23. Grady 2002 Merrory: Encoding - PHT 13 23.2 10 11 70 13 24. Grady 2002 Merrory: Encoding - PHT 13 23.2 10 11 70 13 25. Grady 2008 Merrory: Encoding & Retrieval - PHT 13 23.2 16 0.4 14 27. Grady 2000 Merrory: Encoding & Retrieval - MMH 13 23.2 16 0.4 16 33.2 13 6.3 13 6.3 13 6.3 13 14 6.3 13 <	20	Esposito	1999	Executive/Working Memory	¥	PET	20	18-42	8	21	43-80	6
22 Free 2005 Executive/Working Memory. - PET 13 27. 12 13 65 15 24a Cardy 1994a Memory. Executive. - PET 13 22.3 6 17 67. 111 24a Cardy 1994b Preception - PET 13 22.6 6 17 67. 111 25 Cardy 2000 Preception - PET 13 22.6 15 12 67.4 13 28 Cardy 2000 Preception - PET 13 22.5 15 18 67.3 18 29 Cardy 2000 Executive/Working Memory - MRI 13 22.5 18.3 6 38 67.3 15 30 Cardy 2000 Executive/Working Memory - MRI 12 23.3 6 6 6 7.7 5 31 <td>21</td> <td>Fernandes</td> <td>2006</td> <td>Memory: Retrieval</td> <td>, ≠</td> <td>fMRI</td> <td>12</td> <td>26.3</td> <td>5</td> <td>11</td> <td>71.2</td> <td>13</td>	21	Fernandes	2006	Memory: Retrieval	, ≠	fMRI	12	26.3	5	11	71.2	13
23 Grady 2002 Memory: Encoding - PET 12 22 10 11 70 13 244 Grady 1994b Perception = PET 9 25 6 11 70 13 245 Grady 1994b Perception = PET 10 25.8 16 17 11 246 Grady 2005 Memory: Encoting PET 10 25.8 16 16 6.6 13 250 Grady 2005 Executive/Working Memory - PMRI 16 25.8 16 16 6.5 9 26 Guehess 2005 Executive/Working Memory - PMRI 18 25.8 16 13 6.67.8 17 6.67.8 15 15 15 15 15 16 13 15 16 16 17 16 16 17 16 16 17 15 15 </td <td>22</td> <td>Freo</td> <td>2005</td> <td>Executive/Working Memory</td> <td>=</td> <td>PET</td> <td>13</td> <td>27</td> <td>12</td> <td>13</td> <td>65</td> <td>15</td>	22	Freo	2005	Executive/Working Memory	=	PET	13	27	12	13	65	15
TAM Crady 1994a Perception = PFT 15 26 6 17 17 17 24b Grady 1998 Recurity/Working Memory -/ PFT 13 25 10 16 66 14 25 Grady 2000 Memory: Encoding & Retrieval - PFT 10 225 10 16 66 14 27 Grady 2000 Memory: Encoding & Retrieval - PFT 10 225 18 11 633 9 200 Grady 2000 Perception/Instrino - MRI 16 225 18 11 633 9 31 Grady 2000 Perception/Instrino - MRI 14 22 13 16 68 70 32 32 Gutches 2000 Recutive/Working Memory - PET 12 23.4 12 65 44 17 33	23	Grady	2002	Memory: Encoding	-	PFT	12	23.2	10	11	70	13
240 Crady 1994b Perception = PET 19 27 19 15 11 25 Grady 2005 Memory: Retrieval - PET 12 25.6 15.0 12 70.4 33 25 Grady 2005 Memory: Encoding & Retrieval - PET 12 25.6 15 12 70.4 13 28 Grady 2006 Memory: Encoding Memory - DABIR 12 25.6 15 12 70.4 13 23 Gutchess 2005 Becautiv/Morking Memory - DABIR 13 25.2 15 15 70 32 12 25 67.4 17 33 14 14 21 25 67.4 17 13 14 14 21 25 67.4 17 13 14 14 21 25 67.4 17 31 Haltzer 2000 Exccutive/Morking Memory	243	Grady	19945	Perception	_	PFT	15	26	6	17	67	11
25 Grady 198 Exercitive/Working Memory ≠ PET 13 25 10 16 66 14 27 Grady 2000 Merception + PET 10 25 26 10 66 34 28 Grady 2000 Merception + MRI 12 22.3 16 16 74.4 16 29 Grady 2008 Executive/Working Memory + MRI 13 22.6 13 16 5.5 19 31 Hato 2005 Executive/Working Memory + MRI 13 22.6 18 67.3 5 34 Holtzer 2009 Executive/Working Memory + MRI 12 12.4 12 6.5 8 67.3 14 35 Hideka 2000 Executive/Working Memory - MRI 16 9 7.2.7 6 5 7 64.5 6 71	24h	Grady	1994h	Perception	-	PFT	9	20	9	9	65	11
26 Crady 2035 Memory: Retrieval - PFT 12 25.6 18 12 70 13 27 Grady 2006 Memory: Encoding & Retrieval - PRT 10 23.2 16 16 7.4.4 16 28 Grady 2006 Memory: Encoding & Retrieval - MRI 16 2.6.1 18 7.0.3 12 31 Guning-bloon 2005 Recruitve/Working Memory - MRI 14 2.1 2.0 18 7.0 32 32 Gurichess 2005 Recruitve/Working Memory - PRT 2.3 19.3 1.6 2.6 8.4 1.7 33 Hubert 2009 Recruitve/Working Memory - PRT 12 2.2.4 1 1.2 6.5.3 6.6 6.7 6.6 6.5.3 6.6 7.6 6.5.3 6.6 7.7 6.5 7.7 6.5 7.7 6.5 7.7 7.5 </td <td>210</td> <td>Crady</td> <td>1008</td> <td>Executive/Working Memory</td> <td>_</td> <td>DET</td> <td>13</td> <td>25</td> <td>10</td> <td>16</td> <td>66</td> <td>14</td>	210	Crady	1008	Executive/Working Memory	_	DET	13	25	10	16	66	14
arr conv	25	Crady	2005	Momory Retrieval	7	DET	10	25	15	10	70.4	12
21 chap 200 response r LR 1 2 2 1 0 1 1 0 1 1 1 0 1	20	Grady	2003	Demonstron	-	PEI	12	23.0	15	12	70.4	15
Jas Crady Jubic Memory: Exclusing & Methody: Exclusing & Methody: - Initial 1 2 2 1 1 6 1 6 4 1 31 Gunding-Dixon 2003 Perception/Emotion - MRI 18 2.5.8 13 18 7.3 1.2 32 Guchess 2005 Memory: Exacuting - MRI 14 2.1 2.6 .8.4 17 33 Haut 2005 Executive/Working Memory - PET 12 2.2.4 1 1.2 6.5.4 17 35 Hubert 2009 Executive/Working Memory - MRI 17 2.5.7 7 7 6.6.2 2.1 30 Johnson 2001 Memory: Exacting - MRI 18 2.4.4 3 16 6 7.1 19 41 Licks 2001 Executive/Working Memory - MRI 12 2.7.8 <td< td=""><td>27</td><td>Grady</td><td>2000</td><td>Perception</td><td><i>≠</i></td><td>PEI</td><td>10</td><td>25</td><td>26</td><td>10</td><td>66</td><td>34</td></td<>	27	Grady	2000	Perception	<i>≠</i>	PEI	10	25	26	10	66	34
29 Grady of Carbon Autor (Northing Memory) - Minit 19 24.5 8 18 65.8 8 31 Grassmant Autor 2005 Memory: Encoding - MRI 13 22.6 8 67.3 5 32 Grathes Autor 2005 Executive/Working Memory - PET 8 22.3 6 6.7 5 34 Holtzer 2009 Executive/Working Memory - PET 12 2.5 7 7 65.2 4 35 Hidska 2009 Executive/Working Memory - MRI 12 2.5 7 7 65.2 2 36 Johnson 2001 Executive Working Memory - MRI 13 12.6 67.7 6 7.3 14 40 Jorades 2000 Executive Morking Memory - MRI 13 2.24 1 16 61.72 63 6 7 64 Jora	28	Grady	2006	Memory: Encoding & Retrieval	=	INKI	12	23.2	16	16	/4.4	16
310 Gunning-Dixon 2002 Perception/Enrotion <i>i</i> IMR 13 22.5 8 11 6.5.5 9 331 Gunchess 2005 Memory: Encoding - IMR 14 21.3 2 13 70.3 2 334 Hubert 2005 Becentive/Norking Memory - IMR 18 23.4 12 23.4 1 12 65.4 4 34 Hubert 2009 Becentive/Norking Memory <i>i</i> PET 12 23.4 1 12 65.4 4 37 Hidaka 2001 Memory: Encoding <i>i</i> MRI 17 23.5 7 16 6 63.3 6 39 Johnson 2001 Memory: Encoding <i>i</i> MRI 17 21.6 7 17 73.3 14 41 Kareken 2003 Perception - MRI 18 24.8 3 17 63.3 3 42 Katolja 2009 Memory: Encoding <i>i</i> MRI	29	Grady	2008	Executive/Working Memory	≠	INIRI	16	26.1	5	18	65.8	8
31 Gunning-Daton 2003 Perception/Emotion ≠ MRR 8 25.8 13 8 72.3 12 32 Gunding-Daton 2005 Mercory: Encoding - MR 8 25.8 13 8 72.3 3 12 26 73.4 12 26 65.4.4 17 33 Hubert 2009 Executive/Working Memory ≠ PET 12 22.4.1 1 12 65.4 4 34 Holtzer 2009 Executive/Working Memory ≠ PET 12 22.4.1 1 12 65.2 7 6 65.3 6 34 Johnson 2004 Executive/Working Memory ≠ MRI 5 12.8 1 12 61-72 0 65.2 7 16 67.1 19 14 42.4 3 17 63.3 3 44 Lee 2008 Memory: Encoding ≠ MRI 18 24.4 3 17 65.2 7 16 17 32 14 12	30	Grossman	2002	Executive/Working Memory	=	fMRI	13	22.6	8	11	63.5	9
31 Gurchess 2005 Kennory: Encoding - MRI 14 21 26 13 70 32 34 Holtzer 2005 Executive/Working Memory \neq MRI 23 16 8 6.73 57 17 34 Holtzer 2009 Executive/Working Memory \neq MRI 12 25.1 12 25.6 2 4 36 Itaka 2001 Memory: Encoding \neq MRI 71 22.5 2 7 6.65.2 2 37 Itaka 2001 Executive - MRI 17 13.0 1 2 6.7.7 19 41 Karchen 2003 Perception \neq MRI 17 17.8 18 3 17 63.3 14 42 Kensinger 2008 Memory: Encoding \neq MRI 18 24.4 3 17 63.5 6 63.2 7 13 43 Kakoja 2009 Memory: Encoding \neq MRI	31	Gunning-Dixon	2003	Perception/Emotion	\neq	fMRI	8	25.8	13	8	72.3	12
33 Haut 2005 Executive/Working Memory - PFT 8 23.3 6 8 67.3 5 34 Hubert 2006 Executive/Working Memory - PFT 12 22.4 1 12 65.4 1 35 Hubert 2008 Executive/Working Memory - PRT 12 22.1 7 66.2 2 37 Idiaka 2001 Memory: Encoding - MRI 7 25.5 2 7 66.2 2 40 ponides 2001 Executive/Working Memory - MRI 12 19-30 1 12 61.72 0 41 Karsinger 2008 Memory: Encoding - MRI 18 21.4 17 73.3 14 46.1 21.9 7 73.2 17 13.2 42 Kensinger 2008 Memory: Encoding - MRI 12 22.9 0 9 65.2 7.2 44 Lee's 2008 Mective: Encoding -	32	Gutchess	2005	Memory: Encoding	=	fMRI	14	21	26	13	70	32
34 Holtzer 2009 Executive/Working Memory ≠ MRI 12 12 22.4 11 12 65.8 17 35 Hidaka 2002 Perception/Emotion = MRI 71 12 22.4 1 12 65.2 4 36 Jinka 2001 Memory: Encoding ≠ MRI 7 12 12.24 1 12 65.2 4 38 Johnson 2004 Executive = MRI 5 19.5 1 12 61-72 0 40 Jonides 2008 Decision Making ≠ MRI 18 24.6 7 17 63.3 3 41 Lee 2008 Decision Making ≠ MRI 18 24.9 9 9 65.2 7 17 63.3 12 66 6 17 75 42 Lee 2008 Memory: Encoding = PET 12 27.3 18 14 62.1 7 7 7 7 7 </td <td>33</td> <td>Haut</td> <td>2005</td> <td>Executive/Working Memory</td> <td>=</td> <td>PET</td> <td>8</td> <td>23.3</td> <td>6</td> <td>8</td> <td>67.3</td> <td>5</td>	33	Haut	2005	Executive/Working Memory	=	PET	8	23.3	6	8	67.3	5
35 Hubert 2009 Executive/Working Memory \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ PET 12 22.5.1 7 12 65.5 4 37 lidaka 2001 Memory: Encoding \$\$\$ MRI 6 19.6 19.6 65.3 6 65.3 6 39 Johnson 2001 Language/Semantic Memory \$\$\$ MRI 17 19.30 6 9 7.2 5 41 Kareken 2003 Perception \$\$ MRI 17 10.6 7.7 7.3 14 43 Kakolja 2009 Memory: Encoding \$\$ MRI 17 21.6 7 17 60.3 3 44 Lee 2006 Decision Making \$\$ MRI 12 22.9 4 9 65.2 17 45 Lee 2006 Perception \$\$ MRI 12 23.6 8 12 65.2 16 46 Leinsinger 2000 Perception \$\$ MRI 12 23.4 14 12 </td <td>34</td> <td>Holtzer</td> <td>2009</td> <td>Executive/Working Memory</td> <td>¥</td> <td>fMRI</td> <td>25</td> <td>19–34</td> <td>12</td> <td>25</td> <td>65-84</td> <td>17</td>	34	Holtzer	2009	Executive/Working Memory	¥	fMRI	25	19–34	12	25	65-84	17
36Idaka2002Perception/Enording \neq IMRI1227.71267.27662238Johnson2004Executive $=$ IMRI619.67697662238Johnson2004Executive/Working Memory \neq IMRI1219.311261.71940Jonides2000Executive/Working Memory \neq IMRI1721.67760.3341Karekan2008Memory: Encoding \neq IMRI182431760.3342Kensinger2008Memory: Encoding \neq IMRI1229.84965.2743Lee2008Decision Making \neq IMRI1229.88965.2744Lee2008Decision Making \neq IMRI1229.88965.2745Madden2007Perception $=$ IMRI1227.3131462.1777446Leinsinger2007Perception $=$ PET1223.3141264.51650Madden199Memory: Encoding $=$ PET1223.4141264.51651Madden199Memory: Encoding \neq IMRI13141264.5161	35	Hubert	2009	Executive/Working Memory	\neq	PET	12	22.4	1	12	65	4
37Idaka2001Memory: Encoding#MRI6551665.3639Johnson2001Language/Semantic Memory=MRI931.96972.7541Kareken2003Perception=MRI1719-30112661-22041Kareken2003Perception=MRI1721.671773.31443Kukolja2009Memory: Encoding≠MRI1222.94965.2745Lee2006Executive≠MRI1222.80965.21247Leinsinger2007Perception=PET1222.3171462.1748Maden1996Memory: Encoding=PET1223.3161668.21049Madden1996Memory: Encoding=PET1223.4141264.81313141264.813141274.813141264.813141314141274.813141264.8141314 </td <td>36</td> <td>Iidaka</td> <td>2002</td> <td>Perception/Emotion</td> <td>=</td> <td>fMRI</td> <td>12</td> <td>25.1</td> <td>7</td> <td>12</td> <td>65.2</td> <td>4</td>	36	Iidaka	2002	Perception/Emotion	=	fMRI	12	25.1	7	12	65.2	4
38 Johnson 2004 Executive - MRI 6 19.6 7 6 65.3 6 40 Jonides 2000 Executive/Working Memory - PET 12 19-30 1 12 61-72 0 41 Kensinger 2003 Perception - MRI 17 21.6 7 7 7.3.3 14 Lee 2005 Memory: Encoding - MRI 12 29.9 4 9 65.2 7.2 44 Lee 2005 Deccision Making - MRI 12 29.8 4 9 65.2 7.2 45 Lee 2005 Perception - MRI 12 23.8 19 9.7 7.3 14 46 Leinsinger 2007 Perception PET 12 23.6 8 12 6.6.5 16 7.1 7.1 7.3 14 12 6.6.5 <t< td=""><td>37</td><td>Iidaka</td><td>2001</td><td>Memory: Encoding</td><td>¥</td><td>fMRI</td><td>7</td><td>25.7</td><td>2</td><td>7</td><td>66.2</td><td>2</td></t<>	37	Iidaka	2001	Memory: Encoding	¥	fMRI	7	25.7	2	7	66.2	2
39Johnson2001Language/Semantic Memory=PRI931.96697.2.7541Kareken2003Perception=PRI1219-3011261-72041Kareken2008Perception=PMI1721.6773.31443Kukolja2008Memory: Encoding=PMI182.9.80965.2745Lee2006Executive=PMI122.9.80965.21745Lee2007Perception=PRI122.2.31819713247Leininger2000Perception=PET122.3.681265.6649Madden1996Memory: Encoding=PET122.3.2141274.81649Madden2003Perception/Attention=PET122.3.2141274.81651Madden2003Memory: Encoding=PET122.3.2141274.81653Milhan2002Executive processes=MRI122.3.31466.975.11554Milchell2005Memory: Encoding=MRI132.1.7131464.965.955Milchell2005Sef-relevent processes=	38	Johnson	2004	Executive	=	fMRI	6	19.6	7	6	65.3	6
40Jonides2000Executive/Working Memory \neq PET1219-30111261-7201942Kensinger2003Memory: Encoding \neq MRI1721.671773.31442Kensinger2009Memory: Encoding \neq MRI1229.94965.27244Lee2008Executive \neq MRI1229.94965.27245Leinsinger2007Perception $=$ MRI1229.838961.27247Levine2000Perception $=$ PET1223.681265.7248Madden1996Memory: Encoding $=$ PET1223.20127174931349Madden1996Memory: Encoding $=$ PET1223.20127174947451Madden2003Perception/Attention \neq PET1223.4141274.8131453Miham2003Self-relevent processes \neq PRI1224.4141474.414	39	Johnson	2001	Language/Semantic Memory	=	fMRI	9	31.9	6	9	72.7	5
f1Kareken2003Perception-MRI527.81667.11942Kukolja2009Memory: Encoding \neq MRI182431760.3343Lee2008Decision Making \neq MRI1229.80965.2745Lee2007Perception=MRI1229.80965.21246Leisinger2007Perception=PET1227.3171462.1747Levine2000Perception=PET1227.3171462.1748Madden1996Memory: Encoding=PET1022.521068.21051Madden2002Perception/Attention \neq PET1223.4111274.81353Milharn2002Receptive \neq MRI1223.81068.22454Madden2003Memory: Encoding \neq MRI1223.81068.22455Mitchell2009Self-relevent processes \neq MRI1221.7121.669256Moro2005Memory: Encoding \neq MRI1022.5816686655Mitchell2009Self-relevent processes \neq MRI1	40	Ionides	2000	Executive/Working Memory	¥	PET	12	19-30	1	12	61-72	0
12Kensinger2008Memory: Encoding \neq MRI1721.671773.31434Kukolja2009Memory: Encoding \neq MRI1224931760.3344Lee2006Executive \neq MRI122493965.21245Lee2007Perception=PET1227.3171462.1747Levine2000Perception=PET1227.3171462.1748Madden1996Memory: Encoding=PET1022.521068.2050Madden1999Memory: Encoding=PET1223.4111274.81351Madden2002Perception/Latention \neq PET1223.4111274.81353Milham2002Executive \neq MRI1723.9191774.91655Mitchell2009Self-relevent processes \neq MRI1121.431468.44854Nichon202Executive \neq MRI1421431468.44155Mitchell2009Self-relevent processes \neq MRI1421431468.44155Mitchell2006Memory: Encoding<	41	Kareken	2003	Perception	=	fMRI	5	27.8	16	6	71	19
43Kukolja2009Memory: Encoding \neq MRI182431760.3344Lee2008Decision Making \neq MRI1229.94965.2745Lee2006Executive \neq MRI1229.80965.2746Leinsinger2007Perception=PET1227.3171462.1748Madden2002Language/Semantic Memory=PET1222.681265.51950Madden1996Memory: Encoding=PET1223.201271751Madden2002Perception/Retrieval=PET1223.4141266.51952Maguire2003Memory: Encoding \neq PRI1223.4111274.81353Milham2002Executive \neq MRI1223.41174.91654Milham2002Executive \neq MRI1221.711468.44855Milchell2009Memory: Encoding \neq MRI1323.61068.22156Mofat2006Memory: Encoding \neq MRI1323.61374.46858Nielson2004Executive $=$ MRI1421.7<	42	Kensinger	2005	Memory: Encoding	4	fMRI	17	21.0	7	17	73 3	14
1111210610610101010101010101101000011 <th< td=""><td>43</td><td>Kukolia</td><td>2000</td><td>Memory: Encoding</td><td><i>⊤</i> <i>⊥</i></td><td>fMRI</td><td>18</td><td>24</td><td>3</td><td>17</td><td>60.3</td><td>3</td></th<>	43	Kukolia	2000	Memory: Encoding	<i>⊤</i> <i>⊥</i>	fMRI	18	24	3	17	60.3	3
The be be be be be be be be be be be be be be be 	43	Loo	2005	Decision Making	7 -	fMPI	10	24	1	0	65.2	7
13Lete2000Lete(1)/Vec \neq Initial122.83.819713247Levine2000Perception=PET1227.3171462.1748Madden1996Memory: Encoding=PET1022.521068.2050Madden1996Memory: Encoding=PET1223.4141266.51951Madden2002Perception/Attention \neq PET1223.4141268.82453Milham2002Executive \neq MRI1223.41068.82454Miller2008Memory: Encoding \neq MRI1221.712169255Mitchell2009Self-relevent processes \neq MRI20121.712169256Moffat2006Memory: Encoding \neq MRI1025.58875.11160Nielson2006Memory: Retrieval \neq MRI1621.6731672.455610Otsika2006Executive/Working Memory \neq MRI1621.6731672.45562Paton2008Executive/Working Memory \neq MRI1621.6731669.99610Otsika2006Ex	44	Lee	2008	Executive	+	fMDI	12	29.9	4	9	65.2	12
40Lemsinge200Perception=PRT1326381915247Levine2000Perception=PFT1227.3171462.1748Madden2002Language/Semantic Memory=PFT1223.3171462.1650Madden1996Memory: Encoding=PFT1223.201271751Madden2002Perception/Itention \neq PRT1223.4111266.51952Maguire2003Memory: Encoding \neq MRI1723.9191774.91653Milham2002Executive \neq MRI1223.33610682454Miller2009Self-relevent processes \neq MRI1321.7121692.256Mofota2006Memory: Encoding=MRI1421.712168.42157Morcom2003Memory: Encoding=MRI1421.7121.673.46559Nielson2002Executive=MRI1422.71014.774.96660Nielson2004Executive=MRI1422.71014.774.96661Otsuka2005Executive/Morking Memory	45	Lee	2000	Demonstron	Ŧ	EMDI	12	29.0	20	10	03.2	12
47Levine2000rectendulrectendul=PET1227.3171462.1748Madden1996Memory: Encoding=PET1022.521068.2050Madden1996Memory: Encoding=PET1223.201271751Madden2002bPerception/Attention \neq PET1223.201274.81353Milham2002Executive \neq MRI1223.3161068.22454Miller2008Memory: Encoding \neq MRI1221.7111466.82455Mitchell2009Elf-relevent processes \neq MRI1021.14.31468.44858Nielson2006Memory: Encoding \neq MRI1023.621570.4659Nielson2006Memory: Reciding \neq MRI1023.621570.4659Nielson2006Executive=MRI1429.7101471.12461Otsuka2006Executive/Working Memory \neq MRI1024.56106.8.8662.2Paton2008Executive/Working Memory \neq MRI1621.6731672.45562.4 </td <td>40</td> <td>Lenisniger</td> <td>2007</td> <td>Perception</td> <td>-</td> <td>DET</td> <td>10</td> <td>20</td> <td>30 17</td> <td>19</td> <td>/1 C2 1</td> <td>52</td>	40	Lenisniger	2007	Perception	-	DET	10	20	30 17	19	/1 C2 1	52
448Maddefn2002aLanguage/semantic Memory=Pr11223.6812663050Madden1999Memory: Encoding=PFT1223.201271751Madden2002bPerception/Attention \neq PFT1223.4111274.81352Maguire2003Memory: Entrival=fMRI1223.4111274.81353Milham2002Executive \neq fMRI1723.9191774.91654Miller2008Memory: Encoding \neq fMRI1723.9191774.91655Mitchell2009Self-relevent processes \neq fMRI1323.621168.42157Morcom2003Memory: Encoding \neq fMRI14214314684858Nielson2006Memory: Encoding \neq fMRI1025.58875.11160Nielson2006Memory: Encoding \neq fMRI1024.5631068.42157Morcom2004Executive $=$ fMRI1024.5631067.4111261Orsuka2066Executive/Morking Memory \neq fMRI1024.5631067.45562a	47	Leville	2000	Perception	=	PEI	12	27.5	17	14	62.1	<i>'</i>
49Madden1996Memory: Encoding-PEI1022.521068.2051Madden1999Memory: Encoding-PET1223141266.51951Maduine2003Memory: Retrieval-PRI1223111274.81353Milham2002Executive \neq fMRI12233610682454Miller2008Memory: Encoding \neq fMRI1723.9191774.91655Mitchell2006Memory: Encoding \neq fMRI3027.1252168.42156Mofrat2006Memory: Encoding \neq fMRI1523.621570.4657Morcom2003Memory: Encoding \neq fMRI1024.561068.8658Nielson2006Memory: Encoding $=$ fMRI1429.7101471.12461Otsuka2006Executive/Working Memory $=$ fMRI1429.71068.8662aPaton2008Executive/Working Memory $=$ fMRI1024.5631872.44564Rayah2008Executive/Working Memory $=$ fMRI1523.631468665aReuter-Lorenz<	48	Madden	2002a	Language/Semantic Memory	=	PEI	12	23.6	8	12	65	6
50Madden1999Memory: Encoding $=$ PEI1223.2012717151Madden2002bPerception/Attention \neq PET1223.4111274.81353Milham2002Executive \neq fMRI1223.4111274.91654Miller2008Memory: Encoding \neq fMRI1723.9191774.91655Mitchell2009Self-relevent processes \neq fMRI3027.1252168.47156Mofat2003Memory: Encoding $=$ fMRI1621.67314684857Morcom2003Memory: Retrieval \neq fMRI1025.58875.11160Nielson2004Executive/Working Memory $=$ fMRI1024.561068.8661.0Otsuka2008Executive/Working Memory \neq fMRI1024.561068.8662bPaxton2008Executive/Working Memory \neq fMRI1523.351468663Raigh2008Executive/Working Memory \neq fMRI1523.351468664Raye2008Executive/Working Memory $=$ fMRI1523.3872.749 <t< td=""><td>49</td><td>Madden</td><td>1996</td><td>Memory: Encoding</td><td>=</td><td>PEI</td><td>10</td><td>22.5</td><td>2</td><td>10</td><td>68.2</td><td>0</td></t<>	49	Madden	1996	Memory: Encoding	=	PEI	10	22.5	2	10	68.2	0
51Madden2002Perception/Attention \neq PE11223141266.51952Maguire2003Memory: Retrieval $=$ fMRI1223.4111274.81353Milham2002Executive \neq fMRI1223.93610682454Miller2009Self-retevent processes \neq fMRI1112.712169256Moffat2006Memory: Encoding \neq fMRI3027.1252168.42157Morcom2003Memory: Encoding \neq fMRI1523.621570.4659Nielson2004Executive $=$ fMRI1025.58875.1112461Otsuka2006Executive/Working Memory \neq fMRI1024.561068.8662aPaxton2008Executive/Working Memory \neq fMRI1621.6731672.44963Rajah2008Executive/Working Memory \neq fMRI1823.633872.74964Raye2008Executive/Working Memory $=$ fMRI1621.6731669.9965Ruter-Lorenz20004Executive/Working Memory $=$ fMRI1621.261064.4 <td>50</td> <td>Madden</td> <td>1999</td> <td>Memory: Encoding</td> <td>=</td> <td>PEI</td> <td>12</td> <td>23.2</td> <td>0</td> <td>12</td> <td>/1</td> <td>/</td>	50	Madden	1999	Memory: Encoding	=	PEI	12	23.2	0	12	/1	/
52Maguire2003Memory: Retrieval=fMRI1232.4111274.81353Miller2008Executive \neq fMRI17233610682454Miller2008Memory: Encoding \neq fMRI1723191774.91655Mitchell2009Self-relevent processes \neq fMRI2021.7121682156Moffat2006Memory: Encoding=fMRI14214314684857Morcom2006Memory: Retrieval \neq fMRI1025.58875.11160Nielson2004Executive=fMRI1024.561068.8661Otsuka2006Executive/Working Memory=fMRI1621.6731672.45563Raja2008Executive/Working Memory=fMRI1621.6731669.9964Raye2008Executive/Working Memory=fMRI1823.633872.74965Ruter-Lorenz2000aExecutive/Working Memory=fMRI1823.633866.9965Ruter-Lorenz2000aExecutive/Working Memory=PET1021.261068.4466 </td <td>51</td> <td>Madden</td> <td>20026</td> <td>Perception/Attention</td> <td>≠</td> <td>PET</td> <td>12</td> <td>23</td> <td>14</td> <td>12</td> <td>66.5</td> <td>19</td>	51	Madden	20026	Perception/Attention	≠	PET	12	23	14	12	66.5	19
53Milham2002Executive \neq fMRI12233610682454Miller2009Self-relevent processes \neq fMRI2121.712169256Mofat2006Memory: Encoding \neq fMRI3027.1252168.42157Morcom2003Memory: Encoding=fMRI14214344684858Nielson2006Memory: Retrieval \neq fMRI1025.58875.11160Nielson2004Executive=fMRI1024.561068.8662aPaxton2008Executive/Morking Memory \neq fMRI1024.561068.8662aPaxton2008Executive/Morking Memory \neq fMRI1222.83820735063Rajah2008Executive/Morking Memory \neq fMRI1523.514666669965bRuter-Lorenz2000aExecutive/Morking Memory \neq PET823.391669.9966Ricciardi2009Executive/Morking Memory $=$ PET1021.261067.44567Rypma2000Executive/Morking Memory $=$ PET1021.261067.410<	52	Maguire	2003	Memory: Retrieval	=	fMRI	12	32.4	11	12	74.8	13
54Miller2008Memory: Encoding \neq fMRI1723.9191774.91655Mitchell2006Self-relevent processes \neq fMRI2121.71212169256Moffat2006Memory: Encoding \neq fMRI14214314684857Morcom2003Memory: Encoding \neq fMRI1025.58875.11160Nielson2004Executive $=$ fMRI1025.58875.11161Otsuka2006Executive/Working Memory \neq fMRI1621.6731672.45562bPaxton2008Executive/Working Memory \neq fMRI1621.6731672.45562bPaxton2008Executive/Working Memory \neq fMRI1621.6731672.45562bPaxton2008Executive/Working Memory \neq fMRI152351468665aReuter-Lorenz2000aExecutive/Working Memory $=$ PET1021.261067.41066Niciardi2009Executive/Working Memory $=$ PET1021.261068.4467Rypma2001Executive/Working Memory $=$ PET1021.26 <td< td=""><td>53</td><td>Milham</td><td>2002</td><td>Executive</td><td>\neq</td><td>fMRI</td><td>12</td><td>23</td><td>36</td><td>10</td><td>68</td><td>24</td></td<>	53	Milham	2002	Executive	\neq	fMRI	12	23	36	10	68	24
55Mitchell2009Self-relevent processes \neq fMRl2121.712169256Moffat2006Memory: Encoding \neq fMRl3027.1252168.42157Morcom2003Memory: Encoding $=$ fMRl14214314684858Nielson2006Memory: Encoding $=$ fMRl1025.58875.11160Nielson2004Executive $=$ fMRl1429.7101471.12461Otsuka2006Executive/Working Memory $=$ fMRl1621.6731672.45562aPaxton2008Executive/Working Memory $=$ fMRl1621.6731672.45563Rajah2008Executive/Working Memory $=$ fMRl152351468665aReuter-Lorenz2008Executive/Working Memory $=$ fMRl152351468665bReuter-Lorenz2000Executive/Working Memory $=$ PET1026.261068.4467Rypma2001Executive/Working Memory $=$ PET1026.261064.4465bReuter-Lorenz2008Executive/Working Memory $=$ PET1026.2610 </td <td>54</td> <td>Miller</td> <td>2008</td> <td>Memory: Encoding</td> <td>\neq</td> <td>fMRI</td> <td>17</td> <td>23.9</td> <td>19</td> <td>17</td> <td>74.9</td> <td>16</td>	54	Miller	2008	Memory: Encoding	\neq	fMRI	17	23.9	19	17	74.9	16
56 Moftat2006Memory: Encoding \neq fMRl3027.1252168.421 57 Morcom2003Memory: Encoding $=$ fMRl142143146848 58 Nielson2006Memory: Retrieval \neq fMRl1025.58875.111 60 Nielson2004Executive $=$ fMRl1024.561068.86 61 Otsuka2006Executive/Working Memory \neq fMRl1621.6731672.455 $62a$ Paxton2008Executive/Working Memory \neq fMRl1621.6731672.455 $63a$ Rajah2008Executive/Working Memory \neq fMRl1823.633872.749 $64a$ Raye2008Executive/Working Memory $=$ fMRl1523514686 $65a$ Reuter-Lorenz200bExecutive/Working Memory $=$ PET1021.261067.410 664 Raye2009Executive/Working Memory $=$ PET1021.261068.44 $65a$ Reuter-Lorenz200bExecutive/Working Memory $=$ PET1021.261066.4686 68 Schacter1996Memory: Encoding \neq PET182	55	Mitchell	2009	Self-relevent processes	≠	fMRI	21	21.7	1	21	69	2
57 Morcom2003Memory: Encoding=fMRI142143146848 58 Nielson2006Memory: Retrieval \neq' fMRI1523.621570.46 59 Nielson2004Executive=fMRI1025.58875.111 60 Nielson2004Executive/Working Memory \neq' fMRI1024.561068.86 $62a$ Paxton2008bExecutive/Working Memory \neq' fMRI1621.6731672.455 $62b$ Paxton2008Executive/Working Memory \neq' fMRI825.633872.749 64 Raye2008Executive/Working Memory \neq' fMRI1523514686 $65a$ Reuter-Lorenz2000aExecutive/Working Memory $='$ PET823.391669.99 $65b$ Reuter-Lorenz2000bExecutive/Working Memory $='$ PET1024.261067.410 66 Ricclardi2009Executive/Working Memory $='$ PET1026.261068.44 67 Rypma2001Executive/Working Memory $='$ PET1024.53867.94 66 Ricclardi2009Executive/Working Memory $='$ PET8	56	Moffat	2006	Memory: Encoding	≠	fMRI	30	27.1	25	21	68.4	21
58Nielson2006Memory: Retrieval \neq fMRI1523.621570.4659Nielson2002Executive=fMRI1025.58875.11161Otsuka2006Executive/Working Memory \neq fMRI1024.561068.8662aPaxton2008aExecutive/Working Memory=fMRI1621.6731672.45563Rajah2008Memory: Retrieval \neq fMRI1523.633872.74964Raye2008Executive/Working Memory=fMRI152351468665aReuter-Lorenz2000aExecutive/Working Memory=fMRI1523.391669.99664Ricciardi2009Executive/Working Memory=PET1021.261068.4467Rypma2001Executive/Working Memory=PET1026.261068.64668Schacter196Memory: Encoding \neq PET820.53867.9470Sperling2003Memory: Encoding \neq PET1024.9161074.12371St Jacques2009Memory: Encoding \neq fMRI1024.9161074.123<	57	Morcom	2003	Memory: Encoding	=	fMRI	14	21	43	14	68	48
59Nielson2002Executive=fMRI1025.58875.11160Nielson2004Executive/Working Memory=fMRI1429.7101471.12461Otsuka2006Executive/Working Memory=fMRI1621.6731672.45562aPaxton2008bExecutive/Working Memory=fMRI1621.6731672.45562bPaxton2008aExecutive/Working Memory=fMRI1523.83820735063Rajah2008Memory: Retrieval=fMRI152351468664Raye2008Executive/Working Memory=PET823.391669.9965bReuter-Lorenz2000bExecutive/Working Memory=PET1026.261067.41066Ricciardi2009Executive/Working Memory=PET1026.261068.64667Rypma2001Executive/Working Memory=PET1820.53867.9468Schacter1966Memory: Retrieval \neq PET820.53867.9469Smith2001Executive/Working Memory=PET1026.261074.123	58	Nielson	2006	Memory: Retrieval	≠	fMRI	15	23.6	2	15	70.4	6
60Nielson2004Executive=fMRI1429.7101471.12461Otsuka2006Executive/Working Memory \neq fMRI1024.561068.8662aPaxton2008bExecutive/Working Memory \neq fMRI1621.6731672.45562bPaxton2008aExecutive/Working Memory \neq fMRI825.633872.74963Rajah2003aExecutive/Working Memory \neq fMRI1523514686665aReuter-Lorenz2000aExecutive/Working Memory $=$ PET1021.261067.41066Ricciardi2009Executive/Working Memory $=$ PET1026.261068.4467Rypma2001Executive/Working Memory $=$ PET1026.261068.4468Schacter196Memory: Retrieval \neq PET1222.9141266.61170Sperling2003Memory: Encoding \neq fMRI1024.9161074.12371St Jacques2009Memory: Encoding \neq PET1222.9141266.61171St Jacques2003Memory: Encoding \neq fMRI1024.9161	59	Nielson	2002	Executive	=	fMRI	10	25.5	8	8	75.1	11
61Otsuka2006Executive/Working Memory \neq fMRI1024.561068.8662aPaxton2008bExecutive/Working Memory=fMRI1621.6731672.45563Rajah2008Memory: Retrieval \neq fMRI2122.83820735064Raye2008Executive/Working Memory \neq fMRI825.633872.74964Raye2008Executive/Working Memory=fMRI152351468665aReuter-Lorenz2000aExecutive/Working Memory=PET1021.261067.41066Ricciardi2009Executive/Working Memory=PET1026.261068.4467Rypma2001Executive/Working Memory=PET1026.261068.4469Smith2001Executive/Working Memory=PET1222.9141266.61170Sperling2003Memory: Encoding \neq fMRI1024.9161074.12371St Jacques2009Memory: Encoding \neq fMRI1524.8231570.2873Stevens2008Memory: Encoding=fMRI1226.201270.2	60	Nielson	2004	Executive	=	fMRI	14	29.7	10	14	71.1	24
62aPaxton2008bExecutive/Working Memory=fMRI1621.6731672.45562bPaxton2008aExecutive/Working Memory \neq fMRI2122.83820735063Rajah2008Memory: Retrieval \neq fMRI825.633872.74964Raye2008aExecutive/Working Memory=fMRI152351468665aReuter-Lorenz2000aExecutive/Working Memory=PET1021.261067.41066Ricciardi2009Executive/Working Memory=PET1026.261068.4467Rypma2001Executive/Working Memory=PET1820.53867.9468Schacter1996Memory: Retrieval \neq PET820.53867.9469Smith2001Executive/Working Memory=PET1222.9141266.61170Sperling2003Memory: Encoding \neq fMRI1024.9161074.12371St Jacques2009Memory: Encoding=fMRI1525.3141576.5573Stevens2008Memory: Encoding=fMRI1226.201270.2<	61	Otsuka	2006	Executive/Working Memory	≠	fMRI	10	24.5	6	10	68.8	6
62bPaxton2008aExecutive/Working Memory \neq fMRl2122.83820735063Rajah2008Memory: Retrieval \neq fMRl825.633872.74964Raye2008Executive=fMRl152351468665aReuter-Lorenz2000aExecutive/Working Memory \neq PET823.391669.9965bReuter-Lorenz2000bExecutive/Working Memory=PET1021.261067.41066Ricciardi2009Executive/Working Memory=PET1026.261068.4467Rypma2001Executive/Working Memory=PET820.53867.9468Schacter1996Memory: Retrieval \neq PET820.53866.61170Sperling2003Memory: Encoding \neq MRI1024.9161074.12371St Jacques2009Memory: Encoding \neq fMRI1525.3141576.5573Stevens2008Memory: Encoding=fMRI1225.1515671574Tessitore2005Memory: Encoding \neq fMRI1225.151564.78	62a	Paxton	2008b	Executive/Working Memory	=	fMRI	16	21.6	73	16	72.4	55
63Rajah2008Memory: Retrieval \neq fMRl825.633872.74964Raye2008Executive=fMRl152351468665aReuter-Lorenz2000aExecutive/Working Memory \neq PET823.391669.9965bReuter-Lorenz2000bExecutive/Working Memory=PET1021.261067.41066Ricciardi2001Executive/Working Memory=PET1026.261068.4467Rypma2001Executive/Working Memory=PET820.53867.9468Schacter1996Memory: Retrieval \neq PET820.53867.9469Smith2001Executive/Working Memory=PET1222.9141266.61170Sperling2003Memory: Encoding \neq fMRl1024.8231570.2872Stebbins2002Memory: Encoding=fMRl1525.3141576.5573Stevens2008Memory: Encoding=fMRl1225.151264.7874Tessitore2005Perception/Emotion=fMRl1225.151264.78	62b	Paxton	2008a	Executive/Working Memory	¥	fMRI	21	22.8	38	20	73	50
64Raye2008Executive=fMRl152351468665aReuter-Lorenz2000aExecutive/Working Memory \neq PET823.391669.9965bReuter-Lorenz2000bExecutive/Working Memory=PET1021.261067.41066Ricciardi2009Executive/Working Memory=PET1026.261068.4467Rypma2001Executive/Working Memory=MRI625.341668.64668Schacter1996Memory: Retrieval \neq PET820.53867.9469Smith2001Executive/Working Memory=PET1222.9141266.61170Sperling2003Memory: Encoding \neq fMRI1024.9161074.12371St Jacques2009Memory: Encoding=fMRI1524.8231570.2872Stebbins2002Memory: Encoding=fMRI1226.201270.2474Tessitore2008Memory: Encoding=fMRI1225.1515671575van der Veen2006Memory: Encoding \neq fMRI1225.151264.78 <td>63</td> <td>Rajah</td> <td>2008</td> <td>Memory: Retrieval</td> <td>, ≠</td> <td>fMRI</td> <td>8</td> <td>25.6</td> <td>33</td> <td>8</td> <td>72.7</td> <td>49</td>	63	Rajah	2008	Memory: Retrieval	, ≠	fMRI	8	25.6	33	8	72.7	49
65aReuter-Lorenz2000aExecutive/Working Memory \neq PET823.391669.9965bReuter-Lorenz2000bExecutive/Working Memory=PET1021.261067.41066Ricciardi2009Executive/Working Memory=PET1026.261068.4467Rypma2001Executive/Working Memory=MRI625.341668.64668Schacter1996Memory: Retrieval \neq PET820.53867.9469Smith2001Executive/Working Memory=PET1222.9141266.61170Sperling2003Memory: Encoding \neq fMRI1024.9161074.12371St Jacques2009Memory: Encoding=fMRI1525.3141576.5573Stevens2008Memory: Encoding=fMRI1226.201270.2474Tessitore2005Perception/Emotion=fMRI1225.11515671575van der Veen2006Memory: Encoding \neq fMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2025.1320 <t< td=""><td>64</td><td>Rave</td><td>2008</td><td>Executive</td><td>=</td><td>fMRI</td><td>15</td><td>23</td><td>5</td><td>14</td><td>68</td><td>6</td></t<>	64	Rave	2008	Executive	=	fMRI	15	23	5	14	68	6
65bReuter-Lorenz2000bExecutive/Working Memory=PET1021.261067.41066Ricciardi2009Executive/Working Memory=PET1026.261068.4467Rypma2001Executive/Working Memory=MRI625.341668.64668Schacter1996Memory: Retrieval \neq PET820.53867.9469Smith2001Executive/Working Memory=PET1222.9141266.61170Sperling2003Memory: Encoding \neq fMRI1024.9161074.12371St Jacques2009Memory: Encoding \neq fMRI1524.8231570.2872Stebbins2002Memory: Encoding=fMRI1226.201270.2474Tessitore2005Perception/Emotion=fMRI1225.151264.7875van der Veen2006Memory: Encoding \neq fMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2025.132074.9777Zysset2007Executive=fMRI2326.6232457.130 <td>65a</td> <td>Reuter-Lorenz</td> <td>2000a</td> <td>Executive/Working Memory</td> <td>¥</td> <td>PET</td> <td>8</td> <td>23.3</td> <td>9</td> <td>16</td> <td>69.9</td> <td>9</td>	65a	Reuter-Lorenz	2000a	Executive/Working Memory	¥	PET	8	23.3	9	16	69.9	9
66Ricciardi2009Executive/Working Memory=PET1026.261068.4467Rypma2001Executive/Working Memory=PET1026.261068.4468Schacter1996Memory: Retrieval \neq PET820.53867.9469Smith2001Executive/Working Memory=PET1222.9141266.61170Sperling2003Memory: Encoding \neq fMRI1024.9161074.12371St Jacques2009Memory: Encoding \neq fMRI1524.8231570.2872Stebbins2002Memory: Encoding=fMRI1226.201270.2474Tessitore2005Perception/Emotion=fMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2025.132074.9777Zysset2007Executive=fMRI2326.6232457.130	65b	Reuter-Lorenz	2000b	Executive/Working Memory	=	PET	10	21.2	6	10	67.4	10
1113203101010204467Rypma2001Executive/Working Memory=MRI625.341668.64668Schacter1996Memory: Retrieval \neq PET820.53867.9469Smith2001Executive/Working Memory=PET1222.9141266.61170Sperling2003Memory: Encoding \neq fMRI1024.9161074.12371St Jacques2009Memory: Encoding \neq fMRI1524.8231570.2872Stebbins2002Memory: Encoding=fMRI1525.3141576.5573Stevens2008Memory: Encoding=fMRI1226.201270.2474Tessitore2005Perception/Emotion=fMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2025.132074.9777Zyset2007Executive=fMRI2326.6232457.130	66	Ricciardi	2009	Executive/Working Memory	=	PET	10	26.2	6	10	68.4	4
68Schatter1996Memory: Retrieval \neq PET820.53867.9469Smith2001Executive/Working Memory=PET1222.9141266.61170Sperling2003Memory: Encoding \neq fMRI1024.9161074.12371St Jacques2009Memory: Encoding \neq fMRI1524.8231570.2872Stebins2002Memory: Encoding=fMRI1525.3141576.5573Stevens2008Memory: Encoding=fMRI1226.201270.2474Tessitore2005Perception/Emotion=fMRI1225.1515671575van der Veen2006Memory: Encoding \neq fMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2025.132074.9777Zysset2007Executive=fMRI2326.6232457.130	67	Rynma	2001	Executive/Working Memory	=	fMRI	6	25.2	41	6	68.6	46
69Smith2001Executive/Working Memory=PET1222.9141266.61170Sperling2003Memory: Encoding \neq fMRI1024.9161074.12371St Jacques2009Memory: Encoding \neq fMRI1524.8231570.2872Stebbins2002Memory: Encoding=fMRI1525.3141576.5573Stevens2008Memory: Encoding=fMRI1226.201270.2874Tessitore2005Perception/Emotion=fMRI1225.1515671575van der Veen2006Memory: Encoding \neq fMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2025.132074.9777Zysset2007Executive=fMRI2326.6232457.130	68	Schacter	1996	Memory: Retrieval	+	PFT	8	20.5	3	8	67.0	4
50Jinth201Executive/volting Methody-FE11222.9141266.51170Sperling2003Memory: Encoding \neq fMRI1024.9161074.12371St Jacques2009Memory: Encoding \neq fMRI1524.8231570.2872Stebbins2002Memory: Encoding=fMRI1525.3141576.5573Stevens2008Memory: Encoding=fMRI1226.201270.2474Tessitore2005Perception/Emotion=fMRI1225.151264.7875van der Veen2006Memory: Encoding \neq fMRI2025.132074.9776Wierenga2008Language/Semantic Memory=fMRI2326.6232457.13077Zysset2007Executive=fMRI2326.6232457.130	60	Smith	2001	Executive/Working Momony	+	DET	10	20.5	14	12	66.6	11
70Spring2003Memory: Encoding \neq INRI1024.9161074.12371St Jacques2009Memory: Encoding \neq fMRI1524.8231570.2872Stebbins2002Memory: Encoding=fMRI1525.3141576.5573Stevens2008Memory: Encoding=fMRI1226.201270.2474Tessitore2005Perception/Emotion=fMRI12251515671575van der Veen2006Memory: Encoding \neq fMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2326.6232457.13077Zysset2007Executive=fMRI2326.6232457.130	70	Sporting	2001	Momony Encoding	-	FEI fMDI	12	22.9	14	12	74.1	22
713. Jacques2005Memory: Encoding \neq IMRI1524.8231570.2872Stebbins2002Memory: Encoding=fMRI1525.3141576.5573Stevens2008Memory: Encoding=fMRI1226.201270.2474Tessitore2005Perception/Emotion=fMRI12251515671575van der Veen2006Memory: Encoding \neq fMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2025.132074.9777Zysset2007Executive=fMRI2326.6232457.130	70	Spering St Locause	2003	Momory Encoding	Ŧ	fMDI	10	24.9	10	10	74.1	23
72Stevens2002Memory: Encoding=IMRI1525.3141576.5573Stevens2008Memory: Encoding=fMRI1226.201270.2474Tessitore2005Perception/Emotion=fMRI12251515671575van der Veen2006Memory: Encoding \neq fMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2025.132074.9777Zysset2007Executive=fMRI2326.6232457.130	71	Stabhing	2009	Momory Encoding	+	fMDI	15	24.0	25	15	70.2	o F
73Stevens2008Memory: Encoding=IMRI1226.201270.2474Tessitore2005Perception/Emotion=fMRI12251515671575van der Veen2006Memory: Encoding \neq fMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2025.132074.9777Zysset2007Executive=fMRI2326.6232457.130	72	Steppills	2002	Memory Encoding	=	EN IDI	15	25.3	14	15	76.5	5
74Testitute2005Perception/Emotion=IMRI12251515671575van der Veen2006Memory: Encoding \neq fMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2025.132074.9777Zysset2007Executive=fMRI2326.6232457.130	75	Taggite	2008	Demonstron / Francisco	-	EN INIKI	12	26.2	15	12	70.2	4
75Van der veen2006Memory: Encoding \neq IMRI1225.151264.7876Wierenga2008Language/Semantic Memory=fMRI2025.132074.9777Zysset2007Executive=fMRI2326.6232457.130	74	ressitore	2005	Perception/Emotion	=	INIKI	12	25	15	15	6/	15
76 Witerenga 2008 Language/semantic Memory = IMRI 20 25.1 3 20 74.9 7 77 Zysset 2007 Executive = fMRI 23 26.6 23 24 57.1 30	75	van der Veen	2006	weinory: Encoding	≠	INIKI	12	25.1	5	12	64./	8
// zysset 200/ Executive = IMRI 23 26.6 23 24 57.1 30	70	vvierenga	2008	Language/Semantic Memory	=	INIKI	20	25.1	5	20	/4.9	20
	//	Zysset	2007	Executive	=	INIKI	23	26.6	23	24	57.1	30

R.N. Spreng et al./Neuroscience and Biobehavioral Reviews 34 (2010) 1178-1194

Table 1b

Task related details of included studies.

Exp.	Experiment	Task	Comparison task/BASELINE
1	Learning word pairs	Encoding word pairs under full attention	Retrieving paired word
2	Virtual Morris Water Maze (Arena)	Spatial navigation	Rest
3	Likability judgments of words	Stem completion from learned material	Previously unseen stem completion
4	Learning verbal material	Item retrieval	Temporal-order retrieval
6	Verbal delayed-response	Intra-trial memory	Baseline
7	Encoding & Retrieval of word pairs	Encoding word-pairs	Recognition & recall of word pairs
8	San Diego Odor Identification Test	Smelling odorant	Smelling deionized water
9	Object processing	Novel object	Old object
10	Flanker Task Social reaction time task	Incongruent	Congruent
12	Pleasant/unpleasant noun judgements	Subsequently remembered nouns	Alternating button press
13	Word recognition & Size comparisons	Conjunction of hits	Baseline
14	Deese-Roediger-McDermott variant	Accurate subsequent memory	Baseline
15	N-back of faces	High confidence hits	Subsequently forgotten items
16	Task-switching Slot machine	Cued switching	Fixation Anticipation of no roward
17	Sol machine Retrieval of semantically judged drawings	Correctly remembered items	Correctly rejected new items
19	Retrieval of semantically judged pictures	Successful source recollection	Correctly rejected new items
20	Wisconsin Card Sorting Task	Card sorting to criteria	Immediate matching
21	Auditory presentation of verbal material	Word recognition from full attention	Auditory control
22	Visual working memory for faces	Delayed face matching	Rest
23	Shallow & deep encoding	Face matching	Alternating button press
24a 24b	Facial processing	Face matching	Alternating button press
25	Match-to-sample with faces	Delayed face matching	Alternating button press
26	Viewing images and words	Old-new judgment	Silent naming
27	Facial processing	Nondegraded face matching	Alternating button press
28	Viewing images and words	Perceptual & Semantic; Old-New Judgments	Fixation
30	Sentence comprehension task	Short antecedent noun-gan linkage (Subject)	Pseudofont target detection
31	Facial processing	Emotion discrimination	Rest
32	Viewing photographs of outdoor scenes	Subsequently remembered photographs	Subsequently forgotten photographs
33	Number-letter sequencing task (WAIS)	Number-Letter Sequencing	Number-Letter Span
34	Delayed item recognition task	Load-dependent processing for retention delay	Baseline Sequential movement of discs
36	Facial processing	Gender judgment to negative faces	Size discrimination of rectangles
37	Paired-picture encoding task	Concrete-related paired encoding	Visual noise control
38	Refreshing information	Refreshing previously seen word	Seeing previously seen word
39	Semantic Memory Decision Making task	Category-exemplar matching	Phonological control
40	Verbal Working Memory & Recognition	High recency Oder consistion	Low recency
42	Semantic decision task for object drawings	Subsequently recognized items	Correctly rejected new items
43	Spatial Source Memory Task	Correct spatial context encoding	False spatial context encoding
44	Risky-gains task	Risky decisions	Safe decisions
45	Arrow task (Simon task variant)	Response incompatable	Response compatable Button press for abstract image
40	Distinguishing achromatic textures	Viewing even textures	Viewing random textures
48	Lexical decision task (semantic)	Word/nonword Discrimination	Letter identification
49	Word identification task	Letter encoding	Fixation (with manual response)
50	Learning verbal material	Living/Non-living word judgment	Letter case identification
51	Visual Search Autobiographical memory	Mixed featured target detection with distractors	larget detection with single feature
53	Stroop	Congruent & incongruent by color	Neutral
54	Face-name associative encoding paradigm	Subsequently remembered face-name pairs	Subsequently forgotten pairs
55	Focused visualization	Personal hopes and duties	Impersonal semantic concepts
56	Allocentric spatial navigation	Learning spatial layout of virtual environment	Following cues
57 58	Recognition of famous faces	Enduring Famous Faces	Non-famous foils
59	Go No-go	Response inhibition	Baseline
60	Go No-go	Response inhibition	Baseline
61	Reading Span Test	Reading and Remembering target words	Cued button press
62a	AX Continuous performance task	Goal maintainence from contextual cues	Fixation
62D	AX Continuous performance task Recognition and recency judgments	Goal maintainence from contextual cues	FIXATION Reverse alphabetizing
64	Refreshing information	Selectively refreshing word	Reading word
65a	Verbal working memory	Delayed letter matching	Immediate matching
65b	Spatial working memory	Delayed location matching	Immediate matching
66 67	Working memory for faces	Encoding, maintenance and recognition of faces	Sensimotor control
68	Stem completion	Shallow encoding (low recall)	Deep encoding (high recall)
69	Operation Span dual-task	Math task (Equation verification)	Arbitrary button press
70	Face-name association encoding task	Novel face-name pairs	Fixation
71	Viewing emotional & neutral photographs	Subsequently remembered photographs	Subsequently forgotten photographs
72	Judgments about words	Semantic encoding	Perceptual encoding
73	Facial processing	Subsequently remembered faces	Subsequently lorgotten laces Geometric shape matching
75	Verbal episodic memory task	Correctly Recognized	Correctly Rejected
76	Object naming	Overt picture naming	Passive abstract picture viewing
77	Stroop	Incongruent	Neutral

retrieval and executive function. Eight studies did not fall into these broad domains (see Tables 1a and 1b).

The original studies contributing these foci are presented in Tables 1a and 1b. Prior to the analysis, coordinates reported in MNI space were converted to Talairach coordinates using the Lancaster transformation (Lancaster et al., 2007). In the approach taken by ALE, localization probability distributions for the foci are modeled at the center of 3D Gaussian functions, where the Gaussian distributions are summed across the experiments to generate a map of inter-study consistencies that estimate the likelihood of activation for each focus (the ALE statistic). The foci were modeled using a full-width half-maximum value of 8 mm³. We then compared the summary of observations against a null distribution, determined through 5000 permutations of randomly generated foci identical in number to those being tested. In order to determine reliable differences in brain activity between young and old adults, we tested the null hypothesis that the two sets of foci were randomly distributed and the observed difference between them was zero. For all analyses, the false discovery rate method was employed to correct for multiple comparisons at p < .01 and subjected to a cluster threshold of 100 mm³ (Laird, Fox et al., 2005). For greater detail of the ALE method, see Laird, Fox et al. (2005) and Turkeltaub et al. (2002); for a discussion of meta-analytic approaches to neuroimaging data, see Wager et al. (2007).

Recently, a new version of GingerALE software was released (GingerALE 2.0) that models probability distributions at the experiment level instead of at the level of the foci, changing the analysis from fixed- to random-effects (Eickhoff et al., 2009). This version, however, does not yet compute differences between groups. In an auxiliary analysis not presented here, GingerALE 2.0 was used to calculate within group maps for all of the contrasts. We found that all clusters that were significant in the difference analyses (Young vs. Old) were also significant clusters within each group in the random effects analysis. All analyses reported in this paper were conducted with GingerALE 1.1.

Anatomical labels were applied to the clusters using the Talairach Daemon and visual inspection of the ALE maps that were imported into AFNI (Cox, 1996). Coordinates are reported in Talairach space (Talairach and Tournoux, 1988). In order to rule out the possibility that one cognitive domain was biasing the agerelated differences when comparing old and young across all studies (B), equal (C) and unequal (D) task performance, we determined which studies where contributing foci to age-related clusters. Unless otherwise stated, clusters from the ALE difference analyses (B-D) comprised peak foci in studies from all four cognitive domains. In some cases, significant clusters in the combined analysis may be driven by one of the age groups. All ALE maps were transformed from a volume image to an average multifiducial surface map using Caret software (Van Essen, 2005) for presentation. Multifiducial surface mapping in Caret maps the volume to 12 individuals in the atlas and then creates an average of these maps thereby reducing bias due to individual variability. Subcortical structures are not displayed.

3. Results

The age of young participants averaged 24.81 years (SD = 2.8) while that of old participants was 68.81 years (SD = 3.9) across 77 studies. These means do not include three studies that only reported a range of ages (see Tables 1a and 1b). Sample sizes did not differ between age groups (t < 1). There were no significant main effects of age group or performance on the number of foci contributed to the analysis, nor was the group by performance interaction significant (Fs < 1). Therefore, differences in the number and extent of activation likelihood clusters between age

groups cannot be attributed to the number of foci included in the analysis. There was an effect of imaging modality: fMRI studies had larger sample sizes (fMRI mean N = 14.54, SD = 6.1; PET mean N = 11.70, SD = 2.8; Welch's t = 3.65, p < .001) and reported more activation peaks (fMRI foci mean = 15.59, SD = 14.2; PET foci mean = 9.50, SD = 6.9; Welch's t = 4.02, p < .001).

3.1. Combined ALE results

Fig. 1A shows the regions where the old and young groups combined had reliable activity across studies, and Table 2 lists the coordinates of the maxima from these regions. As expected, most of the active regions were part of the TPN, and included bilateral DLPFC, vOC, SMA, IPS, FEF and alfO. Bilateral rostrolateral prefrontal cortex (RLPFC) was also observed, a region associated with cognitive control (Koechlin et al., 1999; Vincent et al., 2008). Additional regions include visual cortex (beyond vOC), superior temporal gyrus, insula, thalamus and putamen. Some default network regions were also found, including the PCC, left angular gyrus and the medial temporal lobes (MTL) bilaterally. Activation of PCC and medial temporal areas could be due to inclusion of memory tasks that engage these areas.

3.2. Young and old ALE difference results

3.2.1. Differences across all studies

Overall, ALE differences were observed between young and old adults primarily in frontal regions corresponding to the TPN (Table 3 and Fig. 1B). Young adults demonstrated reliably greater activation in right VLPFC and left vOC from the TPN, as well as a region in the right hippocampus. Old adults had more activity in several TPN regions including the right DLPFC and PCS. Dorsal to these clusters, greater activity was also seen in old adults near the superior PCS, anterior to the FEF (note: studies in the domain of perception did not contribute foci to this cluster). Additionally, old adults engaged the left DLPFC and left RLPFC. All of these regions with age differences overlapped with clusters identified as common to both age groups (see Table 3), and all but the hippocampus were consistent with the TPN.

3.3. Age differences when performance was equivalent

Given the importance of examining brain activity in the context of performance, additional analyses were carried out after dividing the studies based on whether or not performance was equivalent in young and old adults. In those studies that reported equivalent performance, differences emerged only in three regions, two of which were in left lateral prefrontal cortex (Fig. 1C and Table 3). Young adults had more activity in left VLPFC, whereas old adults had greater activity in the DLPFC. Both of these regions were consistent with the TPN (Table 2) and overlapped with clusters with reliable activation across both age groups shown in Table 2 (see Fig. 1A). Additionally, there was more reliable recruitment of the left posterior insular cortex in old adults (note: studies in the domain of memory retrieval did not contribute foci to this cluster).

3.4. Differences when performance was unequal

When those studies reporting unequal performance between young and old adults were examined, significant and reliable differences emerged in a number of brain areas. Young adults reliably activated occipital cortex bilaterally, consistent with the TPN (Fig. 1D and Table 3). An additional region in the left MTL also was more active in young adults, but this region did not overlap with any TPN region. In contrast, old adults reliably engaged right DLPFC, and PCS (note: studies from the domain of perception did

R.N. Spreng et al. / Neuroscience and Biobehavioral Reviews 34 (2010) 1178-1194

Fig. 1. Reliable patterns of brain activity across studies. A: Activation likelihood clusters across all studies and age groups. B: Age differences from all studies. C: Age differences from those studies where old and young adults had equivalent performance. D: Age differences from those studies where old adults had poorer performance relative to young adults. Red = young adults > old adults, Blue = old adults > young adults. Activation likelihood clusters (FDR p < .01) are shown on an inflated surface map in Caret (Van Essen, 2005). Some clusters may not appear contiguous due to mapping clusters on the surface maps; for example, this can occur when neighboring gyri, but not the intermediary sulcus, were included in a statistically reliable cluster in the original image volume.

not contribute to this cluster), consistent with the TPN. Old adults who performed more poorly also activated right RLPFC and the left thalamus (Fig. 1D and Table 3).

3.5. Domain specific results

Perception, memory encoding, memory retrieval and executive function independently demonstrated a pattern of activity consistent with the TPN, including reliable clusters in lateral prefrontal

regions, alfO, SMA, and vOC (Figs. 2–5). These findings are consistent with a previous large-scale meta-analysis of domain specific cognition (Cabeza and Nyberg, 2000). Notable domain specific clusters were also apparent and the results are discussed in turn.

3.6. Perception

Perceptual studies, most of which were in the visual modality, showed extensive visual cortical activation, as would be expected

R.N. Spreng et al./Neuroscience and Biobehavioral Reviews 34 (2010) 1178-1194

 Table 2

 Areas of activation common to both young and old adults (all studies).

Lat	Region	BA	x	у	Z	Vol (mm ³)
Task positive	regions					
L	DLPFC	9.46	-42	14	22	13904
L	VLPFC	47	-51	9	2	176
R	DLPFC	9.46	43	17	28	6760
R	DLPFC	9	25	5	26	280
R	RLPFC	10	29	46	11	1472
L	RLPFC	10	-23	49	16	592
L	vOC	19.18	-36	-71	-8	6608
R	vOC	19.18	31	-84	-3	896
R	vOC	19	33	-56	-18	936
R	vOC	19	29	-67	-4	776
В	SMA	6.32	-1	13	46	6112
R	IPS	7	28	-62	40	3504
L	IPS	7	-27	-63	34	3416
R	FEF	6	27	6	48	880
R	FEF	6	29	-9	46	152
L	FEF	6	-26	2	52	784
R	alfO	13	41	13	5	280
Other region	S					
L	Fusiform gyrus	20	-39	-31	-15	200
R	Lingual gyrus	17	13	-90	-2	176
В	Lingual gyrus	18	3	-86	0	120
R	STG	22	52	-16	-1	528
L	Thalamus		-13	-18	6	696
R	Thalamus		13	-11	10	272
R	Thalamus		7	-24	-2	144
L	Putamen		-22	4	-1	304
L	Putamen		-22	-8	11	216
L	Insula	13	-28	-26	19	152
Default mode	e regions					
L	PCC	31	-4	-54	25	176
L	Angular gyrus	40	-42	-54	36	408
L	Hippocampus		-23	-12	-12	640
L	PHC	35	-24	-25	-9	280
R	PHC	28	21	-11	-14	240

Abbreviations: Lat, laterality; L, left; R, right; B, bilateral; X, right/left coordinate; Y, anterior/posterior coordinate; Z, inferior/superior coordinate; Vol, volume; aIFO, anterior insula/frontal operculum; DLPFC, dorsolateral prefrontal cortex; FEF, frontal eye field; IPS, intra-parietal sulcus; LOS, Lateral occipital sulcus; MFG, Middle frontal gyrus; MOG, middle occipital gyrus; PCC, posterior cingulate cortex, PCS, precentral sulcus; PHC, parahippocampal gyrus; POF, Parietal occipital fissure; RLPFC, rostrolateral prefrontal cortex; SMA, supplementary motor area; STG, superior temporal gyrus; VLPFC, ventrolateral prefrontal cortex; vOC, ventral occipital cortex.

(Fig. 2E). Due to the emotional nature of some studies (see Tables 1a and 1b), right amygdala activation was also present (e.g. Breiter et al., 1996). We anticipated age differences in posterior regions, which previous work would suggest should be more active in young adults (Anderson and Grady, 2001; Cabeza et al., 2004; Davis et al., 2008; Grady et al., 1994). Consistent with this prediction, young adults had more activity during perceptual tasks than old adults in a number of occipital regions, including bilateral vOC and extended visual cortex (Fig. 2F and Table 4). Young adults also had greater activity in the right amygdala while old adults showed more activation in DLPFC, consistent with a recent observation of age-related changes in the perception of emotional stimuli (Roalf, Pruis, Stevens & Janowsky, in press). Older adults also showed more activation in left alfO.

3.7. Memory encoding

Encoding information, while not dissimilar to perception, involves the verified retention of perceived information. Additionally, comparison tasks are typically matched for perceptual input. As a result, posterior regions differ in their pattern of activity. Visual cortical areas active for encoding tended to be engaged further upstream in ventral temporal cortex, relative to those active for perception (see Fig. 3G). Additionally, mnemonic areas, such as retrosplenial cortex and the medial temporal lobes were engaged. Age-related differences were modest in this modality. Young adults had more activity in right middle frontal

gyrus and medial temporal lobes, as well as right putamen. In contrast, old adults had greater activity in right PCS (Fig. 3H and Table 4).

3.8. Memory retrieval

The pattern of activity seen for retrieval across age groups was largely consistent with recent ALE meta-analyses of episodic memory retrieval in young adults (McDermott et al., 2009; Spaniol et al., 2009), comprising lateral and medial prefrontal regions, alfO, PCC, medial temporal lobes and occipital cortex (Fig. 4I). Notably absent in the present analysis is engagement of inferior parietal regions, which may be accounted for by the relatively small number of studies included (n = 11). Young adults engaged cortex within the posterior occipital fissure to a greater degree during memory retrieval, whereas old adults engaged the right RLPFC, left preSMA and middle temporal gyrus more than the young adults (Fig. 4J and Table 4).

3.9. Executive function

Tasks of executive function and working memory engaged a reliable network of lateral parietal and frontal regions in both age groups (Fig. 5K). As would be expected from the predominance of frontal activity during tests of executive function, such as working memory and inhibitory tasks (e.g., Braver et al., 1997; D'Esposito et al., 1995; Jonides et al., 1998), the differences between young

R.N. Spreng et al. / Neuroscience and Biobehavioral Reviews 34 (2010) 1178-1194

Table 4

-		~
Та	DIe	23

Age differences between young and old adults across all studies and by performance
--

Lat	Region	TPN	BA	x	у	Z	Vol (mm
All stu	dies						
Youn	ng > Old						
L	vOC	х	19	-41	-77	-1	360
L	Hippocampus		34	-22	-8	-11	208
R	VLPFC	х	13	40	27	14	144
Old >	> Young						
R	Superior PCS/FEF	х	6	26	10	47	480
L	DLPFC	х	9	-41	8	29	392
R	DLPFC	х	46	45	24	23	304
R	PCS/DLPFC	х	6	49	2	32	160
L	RLPFC	x	10	-26	44	19	128
Equal 1	performance						
Youn	g > Old						
L	VLPFC	х	47	-47	26	1	136
Old >	> Young						
L	DLPFC	х	9	-44	7	31	712
L	Posterior insula		13	-50	-37	16	152
Uneau	al performance						
Your	lg > Old						
L	Hippocampus			-21	-7	-11	296
L	vOC	х	19	-40	-80	0	256
R	MOG	х	18	26	-83	-1	224
Old >	> Young						
R	Superior PCS/FEF	x	6	26	8	47	632
R	DLPFC	х	46	46	25	21	384
L	Thalamus		-	-11	-17	12	136
R	RLPFC	x	10	38	44	13	104

Note: TPN = Task positive network. Regions consistent with the TPN are indicated with an "x".

and old adults were seen primarily in frontal regions (Fig. 5L and Table 4). Young adults had more activity in a region of right VLPFC during executive function. Old adults had more activation in bilateral DLPFC, right MFG, left SMA and left RLPFC.

4. Discussion

In this quantitative meta-analysis, we demonstrated reliable age differences in brain activity across multiple cognitive tasks. We found that the TPN, encompassing the DLPFC, RLPFC, alfO, IPS, aIPL, FEF, SMA, vOC and PCS, was robustly active across all studies when both young and old groups were combined, consistent with the idea of task-general activation of this network. In addition, many of the areas with age differences were part of the TPN. Some of these TPN regions, such as left DLPFC were more likely to differentiate young and old adults when these two groups performed equally well. In contrast, when young adults outperformed old adults, right lateral prefrontal and occipital regions, both part of the TPN, were more likely to differentiate the groups. For the purposes of discussing these findings, we will first address age differences in anterior regions of the brain and then consider posterior regions of cortex.

4.1. Anterior cortex

Across all studies young adults had more activity in right VLPFC, whereas old adults had more activity mainly in dorsal frontal regions of the TPN, as well as in RLPFC. This extensive overrecruitment of frontal regions in old adults is consistent with the findings of a recent study that also reported more activity in frontal and rostral frontal cortex TPN regions in old adults across multiple cognitive domains (Grady et al., in press). However, the performance level of the old adults relative to the young adults influenced which frontal areas showed an age difference. The most notable influence of performance on the age differences in TPN

Lat	Region	TPN	BA	x	у	z	Vol (mm ³)
Percept	ion						
Young	g > Old						
R	MOG	х	18	29	-80	5	456
L	vOC	х	19	-41	-77	-1	416
R	vOC	х	18,19	33	-68	-6	392
R	Amygdala			25	-3	-12	184
L	POF		31	-23	-63	13	181
L	LOS		19	-18	-62	-9	160
Old >	Young						
L	DLPFC	х	46	-41	14	22	912
L	aIfO	х	13	-26	20	-3	232
Memor	v encoding						
Vound	$y < \Omega d$						
R	MEC		q	41	11	32	168
R	PHC		27	22	_29	_3	128
L	Putamen		27	-21	23	1	128
2	i utumen			21	-	•	120
Old >	Young						
R	PCS/DLPFC	х	9	50	4	29	128
Memory	y retrieval						
Young	g > Old						
L	POF		31	-13	-61	21	176
Old >	Young						
L	MTG		21	-55	0	-18	232
R	RLPFC	х	10	22	55	5	144
L	preSMA	х	6	-9	26	37	112
Executiv	ve functions						
Young	v > 0 ld						
R	VLPFC	х	47	38	25	16	224
014	Varia						
	MEC/EEE		G	26	0	46	526
R	NIFG/FEF	x	0	20	9	40	100
K	DLPFC	x	40	40	25	22	400
L	DLPFC	x	9	-40	1	32	244
L	KLPFC SMA	x	6 22	-20	45	18	240
L	SIVIA	X	0,32	- D	15	44	100

Age differences between young and old adults by domain.

activity was on the hemisphere that showed an age difference. When performance in the two age groups was equivalent, old adults were more likely to activate left DLPFC and young adults were more likely to activate left VLPFC. These two frontal areas both have been implicated in cognitive control, but may mediate different kinds of control. For example, some have suggested that ventral PFC regions mediate maintenance of information in short term stores (Dove et al., 2006), or represent the salience of such information (Seeley et al., 2007), whereas DLPFC mediates manipulation of information or strategic processes such as monitoring of behavior (D'Esposito et al., 1999; Moscovitch, 1992; Seeley et al., 2007). Our analysis suggests that, for equivalent levels of behavioral output, young adults rely more on control that emphasizes salience or maintenance of information, mediated by left ventral PFC, whereas old adults rely more on strategic control mediated by left dorsal PFC (for a similar conclusion, see Grady et al., 2003). Old adults also had more left DLPFC activity during perceptual and executive function tasks indicating that this strategic control may be utilized primarily for these non-mnemonic cognitive functions.

In contrast, several regions in right lateral prefrontal cortex differentiated young and old adults when their performance was unequal. Two right frontal regions, one in RLPFC (BA 10) and one in DLPFC (BA 46), showed more activity in poorly performing old adults. In addition, RLPFC distinguished the age groups during memory retrieval, where old adults may engage in more top-down strategic retrieval processes. Executive function tasks also showed greater engagement of right DLPFC in old adults, suggesting that this region is not only important for executive function in general

R.N. Spreng et al./Neuroscience and Biobehavioral Reviews 34 (2010) 1178-1194

Fig. 2. Perception. E: Combined ALE map. F: Age related differences. Red = young adults > old adults, Blue = old adults > young adults. Activation likelihood clusters (FDR p < .01) are shown on an inflated surface map in Caret (Van Essen, 2005).

(e.g., Stuss and Alexander, 2000, 2007) but that use of these regions for executive functions increases with age.

Although our understanding of the roles of these frontal areas in cognitive control is far from complete, the results seen here would suggest that different kinds of control are brought on line in young and old adults when required to perform cognitive tasks. Also, DLPFC activity in old adults is higher at low levels of working memory demand but then does not increase to the same degree as seen in young adults when demand increases (Mattay et al., 2006). All these results, taken together, suggest that brain activity in young adults has a larger dynamic range than that of old adults; i.e., young adults can perform relatively easy tasks without engaging prefrontal cortex but also show larger increases than old adults when tasks become more difficult. In addition, the

Fig. 3. Memory encoding. G: Combined ALE map. H: Age-related differences. Red = young adults > old adults, Blue = old adults > young adults. Activation likelihood clusters (FDR p < .01) are shown on an inflated surface map in Caret (Van Essen, 2005).

R.N. Spreng et al./Neuroscience and Biobehavioral Reviews 34 (2010) 1178-1194

Fig. 4. Memory retrieval. I: Combined ALE map. J: Age-related differences. Red = young adults > old adults, Blue = old adults > young adults. Activation likelihood clusters (FDR p < .01) are shown on an inflated surface map in Caret (Van Essen, 2005).

hemispheric difference that we noted, left for better performing old adults and right for poorer performing old adults, is consistent with a recent hypothesis that age-related recruitment of left prefrontal activity will increase in order to compensate but right prefrontal activity is likely to reflect dysfunction of this region (Rajah and D'Esposito, 2005). It is not clear why left prefrontal cortex might be more associated with better performance in old adults, but one possibility is that recruitment of semantic processes mediated by left prefrontal cortex (Thompson-Schill, 2003; Wagner et al., 2001), and preserved with aging (e.g., Grady et al., 2006; Madden, 1986; Spaniol et al., 2006), may facilitate some aspect of cognitive performance.

Age-related differences were also observed in premotor portions of the TPN, in FEF and SMA/pre-SMA. The SMA has been reported to be more active in old adults during inhibitory tasks (Nielson et al., 2002), but not during motor learning (Daselaar et

Fig. 5. Executive function. K: Combined ALE map. L: Age-related differences. Red = young adults > old adults, Blue = old adults > young adults. Activation likelihood clusters (FDR p < .01) are shown on an inflated surface map in Caret (Van Essen, 2005).

al., 2003); age differences in FEF also have been reported during saccades (Raemaekers et al., 2006). Old adults showed more activity than young adults in these premotor areas when old adults performed more poorly and during executive function and memory retrieval tasks. Given the role of the FEF and SMA in the control of motor responses and eye movements (e.g., Boxer et al., 2006; Everling and Munoz, 2000; McDowell et al., 2008; Petit et al., 1998; Picard and Strick, 1996; Pierrot-Deseilligny, 1994), more activity in these areas suggests that old adults require a greater reliance on cognitive control of motor function than do young adults (Heuninckx et al., 2005), particularly on those tasks that make demands on executive functions or memory that old adults are likely to perform more poorly than young adults. In addition, this extra activity in motor planning areas may reflect the longer response times and slowing of saccades that are commonly found in old adults (e.g., Cerella, 1985; Munoz et al., 1998).

4.2. Posterior cortex

Occipital regions also showed reliable age differences, mostly in favor of young adults. Young adults were more likely to activate occipital regions bilaterally, particularly relative to poorly performing old adults. In addition, young adults activated a number of occipital regions more during perceptual tasks in both hemispheres, including TPN regions and other areas not typically considered part of the TPN. This additional engagement of visual cortex in young relative to old adults is consistent with previous reports (Anderson and Grady, 2004; Davis et al., 2008; Madden et al., 2002, 2004). Indeed, some have suggested that enhanced engagement of frontal resources by old adults may be in response to reduced processing by visual cortices (Davis et al., 2008; Grady et al., 1994). Our meta-analysis result is consistent with this idea and further indicates that this may reflect age differences primarily in the amount or elaboration of perceptual processing rather than mnemonic or executive processing.

Parietal cortices, including IPS and aIPL, were engaged in all analyses that combined young and old adults, yet no age-related changes were seen for these nodes of the TPN. Recent reviews of the cognitive neuroscience literature suggest that parts of lateral parietal lobe are involved in the control of attention and memory functions (Cabeza, 2008; Ciaramelli et al., 2008; Corbetta et al., 2008; Vincent et al., 2008). Superior parietal cortex, in conjunction with frontal regions, may control the activity of visual cortex (Bressler et al., 2008), and inferior regions participate in general attentional functions as well as attention to spatial locations (Alain et al., 2008; Wojciulik and Kanwisher, 1999). Age differences in parietal activity have been reported in old adults in some studies, mostly involving attentional tasks, in which both increases (Grady et al., in press; Madden et al., 2007; Townsend et al., 2006) and decreases (Milham et al., 2002; Rosano et al., 2005) in old adults have been noted, relative to young adults. We did not examine attention specifically here, which may account for our failure to find reliable parietal age differences. On the other hand, the inconsistency in the literature may indicate that age differences in parietal cortex are quite dependent on the specific task demands under investigation. In addition, we also have shown recently that functional connectivity of the aIPL is maintained in old adults (Grady et al., in press). This latter result, along with the current meta-analysis, suggest that the parietal nodes of the TPN are not especially vulnerable to aging, in general, although this certainly does not rule out age differences in any given experiment.

4.3. Neurocognitive aging

Broadly speaking, it is useful to consider whether our results shed light on the different interpretations of age differences in brain activity that have been considered in the literature. With the metaanalysis reported here, it is not possible to determine individual differences in brain activity and performance, so a strong case for any of the current theories cannot be made. However, our finding that old adults had more TPN activity, particularly in frontal regions, might reflect less efficient or effective use of these regions, i.e. 'less bang for the buck'. That is, old adults may be allocating more neural resources to attentional and cognitive control operations just to maintain behavioral performance at the level seen in the young. On the other hand, we did find evidence that use of different subsets of frontal TPN regions were associated with different behavioral outcomes in the old adults. This might indicate that some regions, particularly left DLPFC, are more likely to be compensatory than others, as suggested above.

Furthermore, reliable patterns of activation across tasks suggest that the TPN is a useful construct, both in general terms and for understanding cognitive aging specifically. However, results from resting-state functional connectivity analysis of MRI data, which may reflect underlying structural neuroanatomical networks (Margulies et al., 2009; Van Dijk et al., 2010), suggest that the TPN can be broken down into sub-components. For example, dissociations may exist between areas of the TPN participating in visuospatial attention and cognitive control (Vincent et al., 2008). Future work will be required to delineate fully the function and connectivity of brain networks related to cognition and age-related changes in the functional neuroanatomy of these networks.

Outside of the TPN, domain specific age differences also were observed, indicating that one age group or the other may uniquely activate domain-specific processes. This result would be consistent with the idea of 'neural compensation' suggested by Stern (2002, 2009), in which old adults use different brain regions than those used by young adults, because the original network may not be functioning optimally. This type of compensation may or may not be associated with performance equivalent to that seen in young adults, but might nevertheless help to support behavior. Unfortunately, it is proving difficult to disentangle these different alternatives (Craik, 2006; Grady, 2008), and our results do not unequivocally support one interpretation over the others. However, given the clear differences in activation that characterized better and worse performing old adults, these results can be used as a starting point for attempting to clarify the roles of these network subsets in supporting cognitive function in old adults.

In conclusion, we found that old and young adults showed activation of a distributed network of regions, the TPN, across a variety of cognitive domains. We confirmed previous reports that old adults have more activity in frontal regions, but young adults recruit visual cortices more than do old adults. We extended this work to show: (1) the performance by old adults on the tasks reliably influenced the laterality of frontal age differences-left prefrontal cortex activity was greater in old adults who performed well on the tasks and right prefrontal cortex activity was greater in old adults who performed less well; (2) frontal over-recruitment in old adults was seen across cognitive domains, but was most extensive in executive function tasks; (3) age differences in occipital cortex occurred primarily when there were age differences in performance and were driven largely by perceptual functions; (4) other nodes of the TPN, such as premotor regions, also showed age differences that were largely domain-specific; and (5) the parietal lobes showed no reliable age differences, suggesting that these TPN nodes are not generally vulnerable to the effects of age. These results taken together suggest that old adults may recruit the TPN differently depending on factors yet to be identified, and that this differential recruitment has an impact on their cognitive functioning.

Acknowledgements

This work was supported by the Canadian Institutes of Health Research (MOP14036 to CLG), the Canada Research Chairs program, the Ontario Research Fund, the Canadian Foundation for Innovation, and the Heart and Stroke Foundation Centre for Stroke Recovery. We thank Robyn Spring for her assistance with this project. We apologize to any authors whose work was mistakenly overlooked.

Appendix A. Meta-analysis studies

(1) Anderson, N.D., Iidaka, T., Cabeza, R., Kapur, S., McIntosh, A.R., and Craik, F.I.M. (2000). The effects of divided attention on encoding- and retrieval related brain activity: A PET study of younger and older adults. J. Cogn. Neurosci., 12, 775–792.

(2) Antonova, E., Parslow, D., Brammer, M., Dawson, G.R., Jackson, S.H., and Morris, R.G. (2009). Age-related neural activity during allocentric spatial memory. Memory, 17(2), 125–143.

(3) Backman, L., Almkvist, O., Andersson, J., Nordberg, A., Winblad, B., Reineck, R., and Langstrom, B. (1997). Brain activation in young and older adults during implicit and explicit retrieval. J. Cogn. Neurosci., 9, 378–391.

(4) Bergerbest, D., Gabrieli, J.D., Whitfield-Gabrieli, S., Kim, H., Stebbins, G.T., Bennett, D.A., and Fleischman, D.A. (2009). Ageassociated reduction of asymmetry in prefrontal function and preservation of conceptual repetition priming. Neuroimage, 45(1), 237–246.

(5) Cabeza, R., Anderson, N.D., Houle, S., Mangels, J.A., and Nyberg, L. (2000). Age-related differences in neural activity during item and temporal-order memory retrieval: a positron emission tomography study. Journal of Cognitive Neuroscience, 12(1), 197– 206.

(6) Cabeza, R., Daselaar, S.M., Dolcos, F., Prince, S.E., Budde, M., and Nyberg, L. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex, 14(4), 364–375.

(7) Cabeza, R., Grady, C.L., Nyberg, L., McIntosh, A.R., Tulving, E., Kapur, S., Jennings, J.M., Houle, S., and Craik, F.I.M. (1997). Agerelated differences in neural activity during memory encoding and retrieval: A positron emission tomography study. J. Neurosci., 17, 391–400.

(8) Cerf-Ducastel, B., and Murphy, C. (2003). FMRI brain activation in response to odors is reduced in primary olfactory areas of elderly subjects. Brain Research, 986(1–2), 39–53.

(9) Chee, M.W., Goh, J.O., Venkatraman, V., Tan, J.C., Gutchess, A., Sutton, B., Hebrank, A., Leshikar, E., and Park, D. (2006). Age-related changes in object processing and contextual binding revealed using fMR adaptation. Journal of Cognitive Neuroscience, 18(4), 495–507.

(10) Colcombe, S.J., Kramer, A.F., Erickson, K.I., and Scalf, P. (2005). The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychology and Aging, 20(3), 363–375.

(11) Daselaar, S.M., Rombouts, S.A., Veltman, D.J., Raaijmakers, J.G., and Jonker, C. (2003). Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiology of Aging, 24(7), 1013–1019.

(12) Daselaar, S.M., Veltman, D.J., Rombouts, S.A., Raaijmakers, J.G., and Jonker, C. (2003). Neuroanatomical correlates of episodic encoding and retrieval in young and elderly subjects. Brain, 126(Pt 1), 43–56.

(13) Davis, S.W., Dennis, N.A., Daselaar, S.M., Fleck, M.S., and Cabeza, R. (2008). Que PASA? The posterior-anterior shift in aging. Cerebral Cortex, 18(5), 1201–1209.

(14) Dennis, N.A., Daselaar, S., and Cabeza, R. (2007). Effects of aging on transient and sustained successful memory encoding activity. Neurobiology of Aging, 28, 1749–1758.

(15) Dennis, N.A., Hayes, S.M., Prince, S.E., Madden, D.J., Huettel, S.A., and Cabeza, R. (2008). Effects of aging on the neural correlates of successful item and source memory encoding. J Exp Psychol Learn Mem Cogn, 34(4), 791–808.

(16) DiGirolamo, G.J., Kramer, A.F., Barad, V., Cepeda, N.J., Weissman, D.H., Milham, M.P., Wszalek, T.M., Cohen, N.J., Banich, M.T., Webb, A., Belopolsky, A. V., and McAuley, E. (2001). General and task-specific frontal lobe recruitment in older adults during executive processes: a fMRI investigation of task-switching. NeuroReport, 12(9), 2065–2071.

(17) Dreher, J. C., Meyer-Lindenberg, A., Kohn, P., and Berman, K. F. (2008). Age-related changes in midbrain dopaminergic regulation of the human reward system. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 15106–15111.

(18) Duarte, A., Graham, K. S., and Henson, R. N. (2008). Agerelated changes in neural activity associated with familiarity, recollection and false recognition. Neurobiology of Aging.

(19) Duverne, S., Motamedinia, S., and Rugg, M. D. (2009). The relationship between aging, performance, and the neural correlates of successful memory encoding. Cerebral Cortex, 19(3), 733–744.

(20) Esposito, G., Kirkby, B. S., Van Horn, J. D., Ellmore, T. M., and Berman, K. F. (1999). Context-dependent, neural system-specific neurophysiological concomitants of ageing: mapping PET correlates during cognitive activation. Braiin, 122, 963–979.

(21) Fernandes, M. A., Pacurar, A., Moscovitch, M., and Grady, C. L. (2006). Neural correlates of auditory recognition under full and divided attention in young and old adults. Neuropsychologia, 44, 2452–2464.

(22) Freo, U., Ricciardi, E., Pietrini, P., Schapiro, M. B., Rapoport, S. I., and Furey, M. L. (2005). Pharmacological modulation of prefrontal cortical activity during a working memory task in young and older humans: a PET study with physostigmine. American Journal of Psychiatry, 162(11), 2061–2070.

(23) Grady, C. L., Bernstein, L., Siegenthaler, A., and Beig, S. (2002). The effects of encoding task on age-related differences in the functional neuroanatomy of face memory. Psychol. Aging, 17, 7–23.

(24) Grady, C. L., Maisog, J. M., Horwitz, B., Ungerleider, L. G., Mentis, M. J., Salerno, J. A., Pietrini, P., Wagner, E., and Haxby, J. V. (1994). Age-related changes in cortical blood flow activation during visual processing of faces and location. J. Neurosci., 14, 1450–1462.

(25) Grady, C. L., McIntosh, A. R., Bookstein, F., Horwitz, B., Rapoport, S. I., and Haxby, J. V. (1998). Age-related changes in regional cerebral blood flow during working memory for faces. Neuroimage, 8, 409–425.

(26) Grady, C. L., McIntosh, A. R., and Craik, F. (2005). Taskrelated activity in prefrontal cortex and its relation to recognition memory performance in young and old adults. Neuropsychologia, 43, 1466–1481.

(27) Grady, C. L., McIntosh, A. R., Horwitz, B., and Rapoport, S. I. (2000). Age-related changes in the neural correlates of degraded and non-degraded face processing. Cogn. Neuropsychol., 17, 165–186.

(28) Grady, C. L., Springer, M. V., Hongwanishkul, D., McIntosh, A. R., and Winocur, G. (2006). Age-related changes in brain activity across the adult lifespan. Journal of Cognitive Neuroscience, 18, 227–241.

(29) Grady, C. L., Yu, H., and Alain, C. (2008). Age-related differences in brain activity underlying working memory for

spatial and nonspatial auditory information. Cerebral Cortex, 18, 189–199.

(30) Grossman, M., Cooke, A., DeVita, C., Alsop, D., Detre, J., Chen, W., and Gee, J. (2002). Age-related changes in working memory during sentence comprehension: an fMRI study. Neuroimage, 15(2), 302–317.

(31) Gunning-Dixon, F. M., Gur, R. C., Perkins, A. C., Schroeder, L., Turner, T., Turetsky, B. I., Chan, R. M., Loughead, J. W., Alsop, D. C., Maldjian, J., and Gur, R. E. (2003). Age-related differences in brain activation during emotional face processing. Neurobiology of Aging, 24(2), 285–295.

(32) Gutchess, A. H., Welsh, R. C., Hedden, T., Bangert, A., Minear, M., Liu, L. L., and Park, D. C. (2005). Aging and the neural correlates of successful picture encoding: Frontal activations compensate for decreased medial temporal activity. Journal of Cognitive Neuroscience, 17, 84–96.

(33) Haut, M., Kuwabara, H., Moran, M. T., Leach, S., Arias, R., and Knight, D. (2005). The effect of education on age-related functional activation during working memory. Aging, Neuropsychology, and Cognition, 12, 216–229.

(34) Holtzer, R., Rakitin, B. C., Steffener, J., Flynn, J., Kumar, A., and Stern, Y. (2009). Age effects on load-dependent brain activations in working memory for novel material. Brain Research, 1249, 148–161.

(35) Hubert, V., Beaunieux, H., Chetelat, G., Platel, H., Landeau, B., Viader, F., Desgranges, B., and Eustache, F. (2009). Age-related changes in the cerebral substrates of cognitive procedural learning. Hum Brain Mapp, 30(4), 1374–1386.

(36) Iidaka, T., Okada, T., Murata, T., Omori, M., Kosaka, H., Sadato, N., and Yonekura, Y. (2002). Age-related differences in the medial temporal lobe responses to emotional faces as revealed by fMRI. Hippocampus, 12(3), 352–362.

(37) Iidaka, T., Sadato, N., Yamada, H., Murata, T., Omori, M., and Yonekura, Y. (2001). An fMRI study of the functional neuroanatomy of picture encoding in younger and older adults. Brain Research. Cognitive Brain Research, 11(1), 1–11.

(38) Johnson, M. K., Mitchell, K. J., Raye, C. L., and Greene, E. J. (2004). An age-related deficit in prefrontal cortical function associated with refreshing information. Psychol Sci, 15(2), 127–132.

(39) Johnson, S. C., Saykin, A. J., Flashman, L. A., McAllister, T. W., O'Jile, J. R., Sparling, M., Guerin, S. J., Moritz, C. H., and Mamourian, A. (2001). Similarities and differences in semantic and phonological processing with age: patterns of functional MRI activation. Aging Neuropsychol Cogn, 8(4), 307–320.

(40) Jonides, J., Marshuetz, C., Smith, E. E., Reuter-Lorenz, P. A., Koeppe, R. A., and Hartley, A. (2000). Age differences in behavior and PET activation reveal differences in interference resolution in verbal working memory. J. Cogn. Neurosci., 12(1), 188–196.

(41) Kareken, D.A., Mosnik, D.M., Doty, R.L., Dzemidzic, M., and Hutchins, G.D. (2003). Functional anatomy of human odor sensation, discrimination, and identification in health and aging. Neuropsychology, 17, 482–495.

(42) Kensinger, E. A., and Schacter, D. L. (2008). Neural processes supporting young and older adults' emotional memories. Journal of Cognitive Neuroscience, 20(7), 1161–1173.

(43) Kukolja, J., Thiel, C. M., Wilms, M., Mirzazade, S., and Fink, G. R. (2009). Ageing-related changes of neural activity associated with spatial contextual memory. Neurobiology of Aging, 30(4), 630–645.

(44) Lee, T. M., Leung, A. W., Fox, P. T., Gao, J. H., and Chan, C. C. (2008). Age-related differences in neural activities during risk taking as revealed by functional MRI. Soc Cogn Affect Neurosci, 3(1), 7–15.

(45) Lee, T. M., Zhang, J. X., Chan, C. C., Yuen, K. S., Chu, L. W., Cheung, R. T., Chan, Y. S., Fox, P. T., and Gao, J. H. (2006). Age-related differences in response regulation as revealed by functional MRI. Brain Research, 1076(1), 171–176.

(46) Leinsinger, G., Born, C., Meindl, T., Bokde, A. L., Britsch, S., Lopez-Bayo, P., Teipel, S. J., Moller, H. J., Hampel, H., and Reiser, M. F. (2007). Age-dependent differences in human brain activity using a face- and location-matching task: an FMRI study. Dement Geriatr Cogn Disord, 24(4), 235–246.

(47) Levine, B. K., Beason-Held, L. L., Purpura, K. P., Aronchick, D. M., Optican, L. M., Alexander, G. E., Horwitz, B., Rapoport, S. I., and Schapiro, M. B. (2000). Age-related differences in visual perception: a PET study. Neurobiology of Aging, 21(4), 577–584.

(48) Madden, D. J., Langley, L. K., Denny, L. L., Turkington, T. G., Provenzale, J. M., Hawk, T. C., and Coleman, R. E. (2002). Adult age differences in visual word identification: functional neuroanatomy by positron emission tomography. Brain and Cognition, 49(3), 297–321.

(49) Madden, D. J., Turkingon, T. G., Coleman, R. E., Provenzale, J. M., DeGrado, T. R., and Hoffman, J. M. (1996). Adult age differences in regional cerebral blood flow during visual word identification: Evidence from H2150 PET. Neuroimage, 3, 127–142.

(50) Madden, D. J., Turkington, T. G., Provenzale, J. M., Denny, L. L., Hawk, T. C., Gottlob, L. R., and Coleman, R. E. (1999). Adult age differences in the functional neuroanatomy of verbal recognition memory. Hum. Brain Map., 7, 115–135.

(51) Madden, D. J., Turkington, T. G., Provenzale, J. M., Denny, L. L., Langley, L. K., Hawk, T. C., and Coleman, R. E. (2002). Aging and attentional guidance during visual search: functional neuroanatomy by positron emission tomography. Psychology and Aging, 17(1), 24–43.

(52) Maguire, E. A., and Frith, C. D. (2003). Aging affects the engagement of the hippocampus during autobiographical memory retrieval. Braiin, 126(Pt 7), 1511–1523.

(53) Milham, M. P., Erickson, K. I., Banich, M. T., Kramer, A. F., Webb, A., Wszalek, T., and Cohen, N. J. (2002). Attentional control in the aging brain: insights from an fMRI study of the stroop task. Brain and Cognition, 49(3), 277–296.

(54) Miller, S. L., Celone, K., DePeau, K., Diamond, E., Dickerson, B. C., Rentz, D., Pihlajamaki, M., and Sperling, R. A. (2008). Agerelated memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2181–2186.

(55) Mitchell, K. J., Raye, C. L., Ebner, N. C., Tubridy, S. M., Frankel, H., and Johnson, M. K. (2009). Age-group differences in medial cortex activity associated with thinking about self-relevant agendas. Psychology and Aging, 24(2), 438–449.

(56) Moffat, S. D., Elkins, W., and Resnick, S. M. (2006). Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiology of Aging, 27(7), 965–972.

(57) Morcom, A. M., Good, C. D., Frackowiak, R. S., and Rugg, M. D. (2003). Age effects on the neural correlates of successful memory encoding. Braiin, 126(Pt 1), 213–229.

(58) Nielson, K. A., Douville, K. L., Seidenberg, M., Woodard, J. L., Miller, S. K., Franczak, M., Antuono, P., and Rao, S. M. (2006). Agerelated functional recruitment for famous name recognition: an event-related fMRI study. Neurobiology of Aging, 27(10), 1494– 1504.

(59) Nielson, K. A., Langenecker, S. A., and Garavan, H. (2002). Differences in the functional neuroanatomy of inhibitory control across the adult life span. Psychology and Aging, 17(1), 56–71.

(60) Nielson, K. A., Langenecker, S. A., Ross, T. J., Garavan, H., Rao, S. M., and Stein, E. A. (2004). Comparability of functional MRI response in young and old during inhibition. NeuroReport, 15(1), 129–133.

(61) Otsuka, Y., Osaka, N., Morishita, M., Kondo, H., and Osaka, M. (2006). Decreased activation of anterior cingulate cortex in

R.N. Spreng et al./Neuroscience and Biobehavioral Reviews 34 (2010) 1178-1194

the working memory of the elderly. NeuroReport, 17(14), 1479–1482.

(62) Paxton, J. L., Barch, D. M., Racine, C. A., and Braver, T. S. (2008). Cognitive control, goal maintenance, and prefrontal function in healthy aging. Cerebral Cortex, 18(5), 1010–1028.

(63) Rajah, M. N., and McIntosh, A. R. (2008). Age-related differences in brain activity during verbal recency memory. Brain Research, 1199, 111–125.

(64) Raye, C. L., Mitchell, K. J., Reeder, J. A., Greene, E. J., and Johnson, M. K. (2008). Refreshing one of several active representations: behavioral and functional magnetic resonance imaging differences between young and older adults. Journal of Cognitive Neuroscience, 20(5), 852–862.

(65) Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., and Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. J. Cogn. Neurosci., 12(1), 174–187.

(66) Ricciardi, E., Pietrini, P., Schapiro, M. B., Rapoport, S. I., and Furey, M. L. (2009). Cholinergic modulation of visual working memory during aging: a parametric PET study. Brain Res Bull, 79(5), 322–332.

(67) Rypma, B., Prabhakaran, V., Desmond, J. E., and Gabrieli, J. D. (2001). Age differences in prefrontal cortical activity in working memory. Psychology and Aging, 16(3), 371–384.

(68) Schacter, D. L., Savage, C. R., Alpert, N. M., Rauch, S. L., and Albert, M. S. (1996). The role of hippocampus and frontal cortex in age-related memory changes: A PET study. NeuroReport, 7, 1165–1169.

(69) Smith, E. E., Geva, A., Jonides, J., Miller, A., Reuter-Lorenz, P., and Koeppe, R. A. (2001). The neural basis of task-switching in working memory: effects of performance and aging. Proc Natl Acad Sci USA, 98(4), 2095–2100.

(70) Sperling, R. A., Bates, J. F., Chua, E. F., Cocchiarella, A. J., Rentz, D. M., Rosen, B. R., Schacter, D. L., and Albert, M. S. (2003). fMRI studies of associative encoding in young and elderly controls and mild Alzheimer's disease. Journal of Neurology, Neurosurgery and Psychiatry, 74(1), 44–50.

(71) St Jacques, P., Dolcos, F., and Cabeza, R. (2009). Effects of aging on functional connectivity of the amygdala for subsequent memory of negative pictures: A network analysis of fMRI data. Psychological Science, 20(1), 74–84.

(72) Stebbins, G. T., Carrillo, M. C., Dorfman, J., Dirksen, C., Desmond, J. E., Turner, D. A., Bennett, D. A., Wilson, R. S., Glover, G. H., and Gabrieli, J. D. (2002). Aging effects on memory encoding in the frontal lobes. Psychology and Aging, 17, 44–55.

(73) Stevens, W. D., Hasher, L., Chiew, K., and Grady, C. L. (2008). A neural mechanism underlying memory failure in older adults. J Neurosci, 28, 12820–12824.

(74) Tessitore, A., Hariri, A. R., Fera, F., Smith, W. G., Das, S., Weinberger, D. R., and Mattay, V. S. (2005). Functional changes in the activity of brain regions underlying emotion processing in the elderly. Psychiatry Res, 139(1), 9–18.

(75) van der Veen, F. M., Nijhuis, F. A., Tisserand, D. J., Backes, W. H., and Jolles, J. (2006). Effects of aging on recognition of intentionally and incidentally stored words: an fMRI study. Neuropsychologia, 44(12), 2477–2486.

(76) Wierenga, C. E., Benjamin, M., Gopinath, K., Perlstein, W. M., Leonard, C. M., Rothi, L. J., Conway, T., Cato, M. A., Briggs, R., and Crosson, B. (2008). Age-related changes in word retrieval: Role of bilateral frontal and subcortical networks. Neurobiology of Aging, 29, 436–451.

(77) Zysset, S., Schroeter, M. L., Neumann, J., and von Cramon, D. Y. (2007). Stroop interference, hemodynamic response and aging: An event-related fMRI study. Neurobiology of Aging, 28(6), 937–946.

References

- Alain, C., Yu, H., Grady, C., 2008. The inferior parietal lobe contributes to auditory spatial working memory and sensorimotor integration. Journal of Cognitive Neuroscience 20, 285–295.
- Anderson, N.D., Grady, C.L., 2001. Functional imaging in cognitively intact aged people. In: Hof, P., Mobbs, C. (Eds.), Functional Neurobiology of Aging. Academic Press, San Diego, pp. 211–225.
- Anderson, N.D., Grady, C.L., 2004. Functional imaging in healthy aging and Alzheimer's disease. In: Cronin-Golomb, A., Hof, P. (Eds.), Vision in Alzheimer's Disease. Karger, Basel, pp. 62–95.
- Anderson, N.D., Iidaka, T., Cabeza, R., Kapur, S., McIntosh, A.R., Craik, F.I.M., 2000. The effects of divided attention on encoding- and retrieval related brain activity: A PET study of younger and older adults. Journal of Cognitive Neuroscience 12, 775–792.
- Boxer, A.L., Garbutt, S., Rankin, K.P., Hellmuth, J., Neuhaus, J., Miller, B.L., Lisberger, S.G., 2006. Medial versus lateral frontal lobe contributions to voluntary saccade control as revealed by the study of patients with frontal lobe degeneration. Journal of Neuroscience 26, 6354–6363.
- Braver, T.S., Cohen, J.D., Nystrom, L.E., Jonides, J., Smith, E.E., Noll, D.C., 1997. A parametric study of prefrontal cortex involvement in human working memory. NeuroImage 5, 49–62.
- Breiter, H.C., Etcoff, N.L., Whalen, P.J., Kennedy, W.A., Rauch, S.L., Buckner, R.L., Strauss, M.M., Hyman, S.E., Rosen, B.R., 1996. Response and habituation of the human amygdala during visual processing of facial expression. Neuron 17, 875–887.
- Bressler, S.L., Tang, W., Sylvester, C.M., Shulman, G.L., Corbetta, M., 2008. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory
- visual spatial attention. Journal of Neuroscience 28, 10056–10061. Cabeza, R., 2002. Hemispheric asymmetry reduction in older adults: The HAROLD model. Psychology and Aging 17, 85, 100
- model. Psychology and Aging 17, 85–100. Cabeza, R., 2008. Role of parietal regions in episodic memory retrieval: the dual attentional processes hypothesis. Neuropsychologia 46, 1813–1827.
- Cabeza, R., Anderson, N.D., Locantore, J.K., McIntosh, A.R., 2002. Aging gracefully: compensatory brain activity in high-performing older adults. NeuroImage 17, 1394–1402.
- Cabeza, R., Daselaar, S.M., Dolcos, F., Prince, S.E., Budde, M., Nyberg, L., 2004. Taskindependent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cerebral Cortex 14, 364–375.
- Cabeza, R., Grady, C.L., Nyberg, L., McIntosh, A.R., Tulving, E., Kapur, S., Jennings, J.M., Houle, S., Craik, F.I.M., 1997. Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. Journal of Neuroscience 17, 391–400.
- Cabeza, R., Nyberg, L., 2000. Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience 12, 1–47.
- Cerella, J., 1985. Information processing rates in the elderly. Psychological Bulletin 98, 67–83.
- Ciaramelli, E., Grady, C.L., Moscovitch, M., 2008. Top-down and bottom-up attention to memory: a hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia 46, 1828–1851.
- Colcombe, S.J., Kramer, A.F., Erickson, K.I., Scalf, P., 2005. The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychology of Aging 20, 363–375.
- Corbetta, M., Patel, G., Shulman, G.L., 2008. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324.
- Cox, R.W., 1996. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers & Biomedical Research 29, 162–173.
- Craik, F.I., 2006. Brain-behavior relations across the lifespan: a commentary. Neuroscience and Biobehavioral Reviews 30, 885–892.
- Daselaar, S.M., Rombouts, S.A., Veltman, D.J., Raaijmakers, J.G., Jonker, C., 2003. Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiology of Aging 24, 1013–1019. Daselaar, S.M., Veltman, D.J., Rombouts, S.A., Raaijmakers, J.G., Jonker, C., 2005.
- Daselaar, S.M., Veltman, D.J., Rombouts, S.A., Raaijmakers, J.G., Jonker, C., 2005. Aging affects both perceptual and lexical/semantic components of word stem priming: An event-related fMRI study. Neurobiology of Learning and Memory 83, 251–262.
- Davis, S.W., Dennis, N.A., Daselaar, S.M., Fleck, M.S., Cabeza, R., 2008. Que PASA? The posterior-anterior shift in aging. Cerebral Cortex 18, 1201–1209. Dennis, N.A., Hayes, S.M., Prince, S.E., Madden, D.J., Huettel, S.A., Cabeza, R., 2008.
- Dennis, N.A., Hayes, S.M., Prince, S.E., Madden, D.J., Huettel, S.A., Cabeza, R., 2008. Effects of aging on the neural correlates of successful item and source memory encoding. Journal of Experimental Psychololgy: Learning Memory and Cognition 34, 791–808.
- D'Esposito, M., Detre, J.A., Alsop, D.C., Shin, R.K., Atlas, S., Grossman, M., 1995. The neural basis of the central executive system of working memory. Nature 378, 279–281.
- D'Esposito, M., Postle, B.R., Ballard, D., Lease, J., 1999. Maintenance versus manipulation of information held in working memory: An event-related fMRI study. Brain and Cognition 41, 66–86.
- Dosenbach, N.U., Fair, D.A., Miezin, F.M., Cohen, A.L., Wenger, K.K., Dosenbach, R.A., Fox, M.D., Snyder, A.Z., Vincent, J.L., Raichle, M.E., Schlaggar, B.L., Petersen, S.E., 2007. Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Science USA 104, 11073– 11078.
- Dove, A., Brett, M., Cusack, R., Owen, A.M., 2006. Dissociable contributions of the mid-ventrolateral frontal cortex and the medial temporal lobe system to human memory. Neuroimage 31, 1790–1801.

R.N. Spreng et al./Neuroscience and Biobehavioral Reviews 34 (2010) 1178-1194

- Duverne, S., Motamedinia, S., Rugg, M.D., 2009. The relationship between aging, performance, and the neural correlates of successful memory encoding. Cerebral Cortex 19, 733–744.
- Eickhoff, S.B., Laird, A.R., Grefkes, C., Wang, L.E., Zilles, K., Fox, P.T., 2009. Coordinatebased activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping 30, 2907–2926.
- Everling, S., Munoz, D.P., 2000. Neuronal correlates for preparatory set associated with pro-saccades and anti-saccades in the primate frontal eye field. Journal of Neuroscience 20, 387–400.
 Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., 2005.
- Fox, M.D., Snyder, A.Z., Vincent, J.L., Corbetta, M., Van Essen, D.C., Raichle, M.E., 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Science USA 102, 9673–9678.
- Grady, C.L., 1999. Neuroimaging and activation of the frontal lobes. In: Miller, B.L., Cummings, J.L. (Eds.), The Human Frontal Lobes: Function and Disorders. Guilford Press, New York, pp. 196–230.
- Grady, C.L., 2008. Cognitive neuroscience of aging. Annals of the New York Academy of Science 1124, 127–144.
- Grady, C.L., Bernstein, L., Siegenthaler, A., Beig, S., 2002. The effects of encoding task on age-related differences in the functional neuroanatomy of face memory. Psychology and Aging 17, 7–23.
- Grady, C.L., Maisog, J.M., Horwitz, B., Ungerleider, L.G., Mentis, M.J., Salerno, J.A., Pietrini, P., Wagner, E., Haxby, J.V., 1994. Age-related changes in cortical blood flow activation during visual processing of faces and location. Journal of Neuroscience 14, 1450–1462.
- Grady, C.L., McIntosh, A.R., Bookstein, F., Horwitz, B., Rapoport, S.I., Haxby, J.V., 1998. Age-related changes in regional cerebral blood flow during working memory for faces. Neuroimage 8, 409–425.
- Grady, C.L., McIntosh, A.R., Craik, F., 2005. Task-related activity in prefrontal cortex and its relation to recognition memory performance in young and old adults. Neuropsychologia 43, 1466–1481.
- Grady, C.L., McIntosh, A.R., Craik, F.I., 2003. Age-Related differences in the functional connectivity of the hippocampus during memory encoding. Hippocampus 13, 572–586.
- Grady, C.L., Protzner, A.B., Kovacevic, N., Strother, S.C., Afshin-Pour, B., Wojtowicz, M.A., Anderson, J.A.E., Churchill, N., McIntosh, A.R. A multivariate analysis of age-related differences in default mode and task positive networks across multiple cognitive domains. Cerebral Cortex, in press.
- Grady, C.L., Springer, M.V., Hongwanishkul, D., McIntosh, A.R., Winocur, G., 2006. Age-related changes in brain activity across the adult lifespan. Journal of Cognitive Neuroscience 18, 227–241.
- Grady, C.L., Yu, H., Alain, C., 2008. Age-related differences in brain activity underlying working memory for spatial and nonspatial auditory information. Cerebral Cortex 18, 189–199.
- Gusnard, D.A., Akbudak, E., Shulman, G.L., Raichle, M.E., 2001. Medial prefrontal cortex and self-referential mental activity: Relation to a default mode of brain function. Proceedings of the National Academy of Science USA 98, 4259– 4264.
- Hazlett, E.A., Buchsbaum, M.S., Mohs, R.C., Spiegel-Cohen, J., Wei, T.C., Azueta, R., Haznedar, M.M., Singer, M.B., Shihabuddin, L., Luu-Hsia, C., Harvey, P.D., 1998. Age-related shift in brain region activity during successful memory performance. Neurobiology of Aging 19, 437–445.
- Heuninckx, S., Wenderoth, N., Debaere, F., Peeters, R., Swinnen, S.P., 2005. Neural basis of aging: the penetration of cognition into action control. Journal of Neuroscience 25, 6787–6796.
- Jonides, J., Smith, E.E., Marshuetz, C., Koeppe, R.A., Reuter-Lorenz, P.A., 1998. Inhibition in verbal working memory revealed by brain activation. Proceedings of the National Academy of Science USA 95, 8410–8413.
- Kelly, A.M., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., Milham, M.P., 2008. Competition between functional brain networks mediates behavioral variability. Neuroimage 39, 527–537.
- Koechlin, E., Basso, G., Pietrini, P., Panzer, S., Grafman, J., 1999. The role of the anterior prefrontal cortex in human cognition. Nature 399, 148–151.
- Laird, A.R., Fox, P.M., Price, C.J., Glahn, D.C., Uecker, A.M., Lancaster, J.L., Turkeltaub, P.E., Kochunov, P., Fox, P.T., 2005. ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Human Brain Mapping 25, 155–164.
- Lancaster, J.L., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., Mazziotta, J.C., Fox, P.T., 2007. Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping 28, 1194– 1205.
- Logan, J.M., Sanders, A.L., Snyder, A.Z., Morris, J.C., Buckner, R.L., 2002. Underrecruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 33, 827–840.
- Lustig, C., Snyder, A.Z., Bhakta, M., O'Brien, K.C., McAvoy, M., Raichle, M.E., Morris, J.C., Buckner, R.L., 2003. Functional deactivations: change with age and dementia of the Alzheimer type. Proceedings of the National Academy of Science USA 100, 14504–14509.
- Madden, D.J., 1986. Adult age differences in visual word recognition: semantic encoding and episodic retention. Experimental Aging Research 12, 71– 78.
- Madden, D.J., Spaniol, J., Whiting, W.L., Bucur, B., Provenzale, J.M., Cabeza, R., White, L.E., Huettel, S.A., 2007. Adult age differences in the functional neuroanatomy of visual attention: a combined fMRI and DTI study. Neurobiology of Aging 28, 459–476.

- Madden, D.J., Turkingon, T.G., Coleman, R.E., Provenzale, J.M., DeGrado, T.R., Hoffman, J.M., 1996. Adult age differences in regional cerebral blood flow during visual word identification: Evidence from H2150 PET. Neuroimage 3, 127–142.
- Madden, D.J., Turkington, T.G., Provenzale, J.M., Denny, L.L., Hawk, T.C., Gottlob, L.R., Coleman, R.E., 1999. Adult age differences in the functional neuroanatomy of verbal recognition memory. Human Brain Mapping 7, 115–135.
- Madden, D.J., Turkington, T.G., Provenzale, J.M., Denny, L.L., Langley, L.K., Hawk, T.C., Coleman, R.E., 2002. Aging and attentional guidance during visual search: functional neuroanatomy by positron emission tomography. Psychology & Aging 17, 24–43.
- Madden, D.J., Whiting, W.L., Provenzale, J.M., Huettel, S.A., 2004. Age-related changes in neural activity during visual target detection measured by fMRI. Cerebral Cortex 14, 143–155.
- Margulies, D.S., Vincent, J.L., Kelly, C., Lohmann, G., Uddin, L.Q., Biswal, B.B., Villringer, A., Castellanos, F.X., Milham, M.P., Petrides M, 2009. Precuneus shares intrinsic functional architecture in humans and monkeys. Proceedings of the National Academy of Science USA 106, 20069–20074.
- Mattay, V.S., Fera, F., Tessitore, A., Hariri, A.R., Berman, K.F., Das, S., Meyer-Lindenberg, A., Goldberg, T.E., Callicott, J.H., Weinberger, D.R., 2006. Neurophysiological correlates of age-related changes in working memory capacity. Neuroscience Letters 392, 32–37.
- McDermott, K.B., Szpunar, K.K., Christ, S.E., 2009. Laboratory-based and autobiographical retrieval tasks differ substantially in their neural substrates. Neuropsychologia 47, 2290–2298.
- McDowell, J.E., Dyckman, K.A., Austin, B.P., Clementz, B.A., 2008. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain and Cognition 68, 255–270.
- McIntosh, A.R., Sekuler, A.B., Penpeci, C., Rajah, M.N., Grady, C.L., Sekuler, R., Bennett, P.J., 1999. Recruitment of unique neural systems to support visual memory in normal aging. Current Biology 9, 1275–1278.
- McKiernan, K.A., Kaufman, J.N., Kucera-Thompson, J., Binder, J.R., 2003. A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. Journal of Cognitive Neuroscience 15, 394–408.
- Milham, M.P., Erickson, K.I., Banich, M.T., Kramer, A.F., Webb, A., Wszalek, T., Cohen, N.J., 2002. Attentional control in the aging brain: insights from an fMRI study of the stroop task. Brain and Cognition 49, 277–296.Miller, S.L., Celone, K., DePeau, K., Diamond, E., Dickerson, B.C., Rentz, D., Pihlaja-
- Miller, S.L., Celone, K., DePeau, K., Diamond, E., Dickerson, B.C., Rentz, D., Pihlajamaki, M., Sperling, R.A., 2008. Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Science USA 105, 2181–2186.
- Morcom, A.M., Good, C.D., Frackowiak, R.S., Rugg, M.D., 2003. Age effects on the neural correlates of successful memory encoding. Brain 126, 213–229.
- Morcom, A.M., Li, J., Rugg, M.D., 2007. Age effects on the neural correlates of episodic retrieval: Increased cortical recruitment with matched performance. Cerebral Cortex 17, 2491–2506.
- Moscovitch, M., 1992. Memory and working-with-memory: A component process model based on modules and central systems. Journal of Cognitive Neuroscience 4, 257–267.
- Munoz, D.P., Broughton, J.R., Goldring, J.E., Armstrong, I.T., 1998. Age-related performance of human subjects on saccadic eye movement tasks. Experimental Brain Research 121, 391–400.
- Nielson, K.A., Langenecker, S.A., Garavan, H., 2002. Differences in the functional neuroanatomy of inhibitory control across the adult life span. Psychology and Aging 17, 56–71.
- Park, D.C., Reuter-Lorenz, P., 2009. The adaptive brain: aging and neurocognitive scaffolding. Annual Review of Psychology 60, 173–196.
- Petit, L., Courtney, S.M., Ungerleider, L.G., Haxby, J.V., 1998. Sustained activity in the medial wall during working memory delays. Journal of Neuroscience 18, 9429– 9437.
- Picard, N., Strick, P.L., 1996. Motor areas of the medial wall: a review of their location and functional activation. Cerebral Cortex 6, 342–353.
- Pierrot-Deseilligny, C., 1994. Saccade and smooth-pursuit impairment after cerebral hemispheric lesions. European Neurology 34, 121–134.
 Raemaekers, M., Vink, M., van den Heuvel, M.P., Kahn, R.S., Ramsey, N.F., 2006.
- Raemaekers, M., Vink, M., van den Heuvel, M.P., Kahn, R.S., Ramsey, N.F., 2006. Effects of aging on BOLD fMRI during prosaccades and antisaccades. Journal of Cognitive Neuroscience 18, 594–603.
- Raichle, M.E., MacLeod, A.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L., 2001. A default mode of brain function. Proceedings of the National Academy of Science USA 98, 676–682.
- Rajah, M.N., D'Esposito, M., 2005. Region-specific changes in prefrontal function with age: a review of PET and fMRI studies on working and episodic memory. Brain 128, 1964–1983.
- Reuter-Lorenz, P.A., Jonides, J., Smith, E.E., Hartley, A., Miller, A., Marshuetz, C., Koeppe, R.A., 2000. Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience 12, 174–187.
- Reuter-Lorenz, P.A., Lustig, C., 2005. Brain aging: reorganizing discoveries about the aging mind. Curren Opinion in Neurobiology 15, 245–251.
- Rosano, C., Aizenstein, H., Cochran, J., Saxton, J., De Kosky, S., Newman, A.B., Kuller, L.H., Lopez, O.L., Carter, C.S., 2005. Functional neuroimaging indicators of successful executive control in the oldest old. Neuroimage 28, 881–889.
- Rosen, A.C., Prull, M.W., O'Hara, R., Race, E.A., Desmond, J.E., Glover, G.H., Yesavage, J.A., Gabrieli, J.D., 2002. Variable effects of aging on frontal lobe contributions to memory. NeuroReport 13, 2425–2428.
- Rypma, B., D'Esposito, M., 2000. Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience 3, 509–515.

R.N. Spreng et al. / Neuroscience and Biobehavioral Reviews 34 (2010) 1178-1194

- Schacter, D.L., Savage, C.R., Alpert, N.M., Rauch, S.L., Albert, M.S., 1996. The role of hippocampus and frontal cortex in age-related memory changes: A PET study. NeuroReport 7, 1165-1169.
- Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L., processing and executive control. Journal of Neuroscience 27, 2349–2356.
- Shulman, G.L., Fiez, J., Corbetta, M., Buckner, R.L., Miezin, F., Raichle, M.E., Petersen, S.E., 1997. Common blood flow changes across visual tasks: Decreases in cerebral cortex. Journal of Cognitive Neuroscience 9, 648-663.
- Spaniol, J., Davidson, P.S., Kim, A.S., Han, H., Moscovitch, M., Grady, C.L., 2009. Eventrelated fMRI studies of episodic encoding and retrieval: meta-analyses using activation likelihood estimation. Neuropsychologia 47, 1765-1779.
- Spaniol, J., Madden, D.J., Voss, A., 2006. A diffusion model analysis of adult age differences in episodic and semantic long-term memory retrieval. Journal of Experimental Psychology: Learning, Memory and Cognition 32, 101-117
- Springer, M.V., McIntosh, A.R., Winocur, G., Grady, C.L., 2005. The relation between brain activity during memory tasks and years of education in young and old adults. Neuropsychology 19, 181–192.
- Stern, Y., 2002. What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society 8, 448-460
- Stern, Y., 2009. Cognitive reserve. Neuropsychologia 47, 2015-2028.
- Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K.E., Hilton, H.J., Flynn, J., Sackeim, H., van Heertum, R., 2005. Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex 15, 394-402.
- Stuss, D.T., Alexander, M.P., 2000. Executive functions and the frontal lobes: a conceptual view. Psychological Research 63, 289-298.
- Stuss, D.T., Alexander, M.P., 2007. Is there a dysexecutive syndrome? Philosophical Transactions of the Royal Society of London B: Biological Science 362, 901-915.

- Talairach, J., Tournoux, P., 1988. Co-Planar Stereotaxic Atlas of the Human Brain (M. Rayport, Trans.). Thieme Medical Publishers, Inc, New York.
- Thompson-Schill, S.L., 2003. Neuroimaging studies of semantic memory: inferring
- "how" from "where". Neuropsychologia 41, 280–292.
 Toro, R., Fox, P.T., Paus, T., 2008. Functional Coactivation Map of the Human Brain. Cerebral Cortex 18, 2553–2559.
- Townsend, J., Adamo, M., Haist, F., 2006. Changing channels: an fMRI study of aging and cross-modal attention shifts. Neuroimage 31, 1682-1692.
- Turkeltaub, P.E., Eden, G.F., Jones, K.M., Zeffiro, T.A., 2002. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16, 765-780.
- Van Dijk, K.R., Hedden, T., Venkataraman, A., Evans, K.C., Lazar, S.W., Buckner, R.L., 2010. Intrinsic Functional Connectivity as a Tool For Human Connectomics: Theory, Properties, and Optimization. Journal of Neurophysiology 103, 297-321.
- Van Essen, D.C., 2005. A Population-Average. Landmark- and Surface-based (PALS) atlas of human cerebral cortex. NeuroImage 28, 635-662.
- Vincent, J.L., Kahn, I., Snyder, A.Z., Raichle, M.E., Buckner, R.L., 2008. Evidence for a Frontoparietal Control System Revealed by Intrinsic Functional Connectivity. Journal of Neurophysiology 100, 3328-3342.
- Wager, T.D., Lindquist, M., Kaplan, L., 2007. Meta-analysis of functional neuroimaging data: current and future directions. Social Cognitive and Affective Neuroscience 2, 150-158.
- Wagner, A.D., Pare-Blagoev, E.J., Clark, J., Poldrack, R.A., 2001. Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron 31, 329–338.
- Wojciulik, E., Kanwisher, N., 1999. The generality of parietal involvement in visual attention. Neuron 23, 747-764.
- Zarahn, E., Rakitin, B., Abela, D., Flynn, J., Stern, Y., 2007. Age-related changes in brain activation during a delayed item recognition task. Neurobiology of Aging 28.784-798.