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A B S T R A C T

We conducted a systematic review of the neuroimaging literature examining cognition in old and young
adults and quantified these findings in a series of meta-analyses using the activation likelihood
estimation technique. In 80 independent samples, we assessed significant convergent and divergent
patterns of brain activity across all studies; where task performance was equated or different between
age groups; and in four specific cognitive domains (perception, memory encoding, memory retrieval and
executive function). Age differences across studies predominantly involved regions within the ‘task-
positive network’ of the brain, a set of interconnected regions engaged during a variety of externally
driven cognitive tasks. Old adults engaged prefrontal regions more than young adults. When
performance was equivalent, old adults engaged left prefrontal cortex; poorly performing old adults
engaged right prefrontal cortex. Young adults engaged occipital regions more than old adults,
particularly when performance was unequal and during perceptual tasks. No age-related differences
were found in the parietal lobes. We discuss the reliable differences in brain activation with regards to
current theories of neurocognitive aging.
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1. Introduction

In recent years, functional neuroimaging has become an ever
more popular tool to study the neural correlates of differences in
cognitive function between young and old adults. When brain
activity in young and old adults is compared on a task, there are at
least three possible outcomes in any given brain area: (1) young and
old groups could have equivalent brain activity, (2) old adults could
show less activity, or (3) old adults could show greater activity.
Equivalent activity is generally considered evidence for spared
function in the elderly, although if performance is lower in the old
group thismay indicate less effectiveuse of neural resources (Zarahn
et al., 2007). Reduced activity in the elderly can reasonably be
assumed to reflect a reduced level of functioning, particularly when
accompanied by poorer performance on the task (e.g., Anderson
et al., 2000; Grady et al., 2006; Rypma and D’Esposito, 2000).
Increased recruitment of brain regions in old compared to young
participants is themost intriguing result, butposes amajor challenge
of interpretation. For example, over-recruitment of brain activity in
old adults could potentially be due to compensation, inefficiency in
utilization of some neural processes, or a reduction in the
differentiation and/or specificity of response during a given task
(for reviews, see Cabeza, 2002; Grady, 2008; Rajah and D’Esposito,
2005).

This growing literature on the neuroscience of cognitive aging
has suggested that there are some reliable age-related differences
in brain activity found across studies. From the earliest experi-
ments in this field, which involved perceptual matching tasks, it
was clear that age differences in brain activity could take the form
of both decreases and increases of activity in old adults compared
to their younger counterparts, with increases found in prefrontal
cortex and decreases found in occipital regions (Grady et al., 1994).

Age-related changes in neural activity have been observed
across numerous cognitive domains, including perception (e.g.
Grady et al., 1994), memory encoding (e.g. Madden et al., 1996),
memory retrieval (e.g. Schacter et al., 1996), workingmemory and
executive functions (e.g. Grady et al., 1998). Studies of perception
often involve the presentation of a stimulus, paired with a decision
about that stimulus. Encoding information is not dissimilar to
perception; however, entails later verifying the retention of
perceived information. Memory retrieval, on the other hand,
involves a test of previously learned information. Finally, working
memory and executive functions are examined by a diversity of
tasks involving the maintenance and manipulation of information
online or response inhibition and selection according to task goals.

Many subsequent studies have replicated age-related increases
in frontal cortex (e.g., Cabeza et al., 2002; Madden et al., 1999;
Morcom et al., 2003; Nielson et al., 2002; Rosen et al., 2002) and
decreases in visual areas (Anderson and Grady, 2004; Davis et al.,
2008; Madden et al., 2002, 2004). Increased activity in old adults
initially led to the suggestion that additional frontal activity can
compensate for reduced activity elsewhere in the brain, providing
a benefit to cognitive performance (Cabeza et al., 1997; Grady et
al., 1994), and much of the subsequent work has continued to
explore this idea. When old adults recruit a brain region or regions
that are not active in young adults, but have performance
equivalent to that seen in young adults, then the over-recruitment
has generally been interpreted as compensatory (Cabeza et al.,
1997; Grady et al., 1994, 2008; Reuter-Lorenz et al., 2000).

However, other interpretations of over-recruited activity in old
adults are also possible. For example, inefficient use of brain
activity in old adults has been invoked when there is no age
difference in behavior but old adults have more activity in task-
related brain regions than do young adults (Morcom et al., 2007;
Zarahn et al., 2007). That is, old adultsmay need to allocate greater
neural resources in general, but this may not necessarily translate
into better task performance. However, the possibility that this
engagement of new areas represents non-selective recruitment or
dedifferentiation in the elderly cannot be ruled out entirely (Logan
et al., 2002). Indeed, some recent work suggests that over-
recruitment of prefrontal cortex is found primarily in old adults
who perform poorly on the task at hand (Colcombe et al., 2005;
Duverne et al., 2009; Grady et al., in press). Finally, perhaps the
strongest evidence for compensation occurs when old adults
recruit brain activity that is not seen in young adults, and the
engagement of this area or areas is directly correlated with better
performance only in the old adults and not in the young (Grady
et al., 2002, 2005, 2003; McIntosh et al., 1999; Stern et al., 2005).
This would indicate the recruitment of a unique pattern of neural
activity that supports task performance in an age-specific manner.
At the current time, it seems likely that at least some age-related
differences in brain activity are compensatory, but certainly one
cannot make this claim for all such differences, and it is not clear
how widespread this phenomenon would be across tasks or
cognitive domains.

There have been a few reviews and meta-analyses attempting
to identify common trends across papers in the aging neuroscience
literature (Anderson and Grady, 2001, 2004; Cabeza, 2002; Grady,
1999; Park and Reuter-Lorenz, 2009; Rajah and D’Esposito, 2005;
Reuter-Lorenz and Lustig, 2005). Although these have shownwhat
appear to be relatively robust findings across independent studies,
primarily related to memory, there has not yet been a meta-
analysis using quantitative methods to identify common age-
related changes across all the cognitive domains that have been
studied. It seemed to us that sufficient data had appeared in the
literature for this to be a worthwhile undertaking. In addition,
reliable findings across studies could provide information about
areas of the brain that are most vulnerable to the effects of aging
(i.e., those with age-related reductions in activity) and those that
might show the most plasticity (i.e., those with age-related
increases in activity) in response to these effects.

In this paper we have carried out a quantitative meta-analysis
using the activation likelihood estimation (ALE) approach for
neuroimaging data (Laird et al., 2005; Turkeltaub et al., 2002).
Becausewewere looking for age differences that are reliable across
cognitive domains, we expected involvement of brain areas that
mediate cognitive processes underlyingmultiple types of tasks. An
example of such a set of brain areas is the so-called ‘task-positive
network’ (Fox et al., 2005; Toro et al., 2008), or TPN. The TPN is
active during a wide variety of externally-driven cognitive tasks,
and consists of regions thought to be involved in attention and
cognitive control (e.g., Corbetta et al., 2008; D’Esposito et al., 1995;
Dosenbach et al., 2007; Dove et al., 2006; Vincent et al., 2008). The
regions generally considered to be part of the network are: (1)
dorsolateral prefrontal cortex (DLPFC), rostrolateral prefrontal
cortex (RLPFC) and anterior insula/frontal operculum (aIfO); (2)
superior parietal cortex near the intraparietal sulcus (IPS) and
anterior inferior parietal lobes (aIPL, particularly the supramar-
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ginal gyri); (3) frontal eye fields (FEF); (4) supplementary motor
area (SMA and/or preSMA); (5) ventral occipital cortex (vOC); and
(6) postcentral gyrus (PCS) (Fox et al., 2005; Toro et al., 2008). A
different network, called the ‘default network’, increases its
activity when people are in a quiescent state and attending to
internally driven cognitive processes, and reduces its activitywhen
an external task-based focus is required (Gusnard et al., 2001;
McKiernan et al., 2003; Raichle et al., 2001; Shulman et al., 1997).
Recently it was shown that the degree of anti-correlation between
the task positive and default networks is related to performance on
cognitive tests (Kelly et al., 2008), suggesting that the balance
between the default and task positive networks is critical for
effective cognitive processing. Several studies have found that old
adults show less reduction of default mode activity during
cognitive tasks, and reduced functional connectivity in this
network, relative to young adults (Grady et al., 2006; Lustig
et al., 2003;Miller et al., 2008). In contrast, a recent study indicated
that old adults have greater recruitment of the TPN across several
cognitive domains, and preserved functional connectivity, relative
to young adults (Grady et al., in press). Over-recruitment of the
TPN as a whole is consistent with reports of increased activity in
prefrontal and parietal regions in old relative to young adults
during both episodic memory retrieval (Morcom et al., 2007) and
attention (Townsend et al., 2006) tasks.

In the current studywe sought to identify stable regions of brain
activity engaged across tasks and to identify differences in reliable
brain activity related to age. To begin, we first identified brain
regions reliably involved across all studies and participants.
Similar to a previous meta-analysis (Toro et al., 2008), we
predicted that reliable task-related activation would be found in
regions consistent with the TPN. We then identified brain regions
where young and old adults had differences in activity and
assessed the overlap between these areas and those active for both
age groups. This overlap would indicate that old adults have
reliable changes in engagement of the TPN, or a subset of the nodes
of the TPN. Age-related reductions would suggest vulnerability in
more regional or specific processes, whereas increased activity in
old adults might indicate age-specific adaptations or reorganiza-
tions of function. In order to identify neural activity associated
with changes in cognition with advancing age, we also examined
age differences in brain activity related to task performance. For
these analyses, we divided tasks where young and old adults had
equivalent performance, indicative of more successful cognitive
aging, from tasks where old adults performed less well than the
young group, indicative of less successful cognitive aging. More
activity in old adults who perform as well as their younger
counterparts would suggest that these regions, and the processes
that they mediate, are more likely to be effective in supporting
cognitive function. In contrast, age differences between young
adults and poorer performing old adultsmight indicate those types
of processes and brain regions that aremore vulnerable in aging, or
those processes that are less effective at supporting cognitive
function in the elderly. A third set of analyses examined studies
within each cognitive domain, including perception, memory
encoding, memory retrieval and executive function. The aim of
these analyses was to shed light on the functions of the regions
showing age differences across cognitive domains.

2. ALE method

2.1. Selection of studies

Neuroimaging studies of cognitive aging were selected using a
systematic search process. Peer-reviewed articles, published in
Englishbetween January1982and July2009,were selected fromthe
search results of three separate databases: Medline, PsycInfo and

ScienceCitation Index. Searcheswere conductedusing the following
terms: (1) keywords: ‘‘age’’ <OR> ‘‘aging’’ <OR> ‘‘ageing’’ <OR>
‘‘age-related’’<OR> ‘‘older adults’’<OR> ‘‘adult life-span’’; AND (2)
Keywords: ‘‘neuroimaging’’ <OR> ‘‘cerebral blood flow’’ <OR>
‘‘fMRI’’ <OR> ‘‘functional magnetic resonance imaging’’ <OR>
‘‘PET’’<OR> ‘‘positron emission tomography’’; AND (3) Population:
‘‘human’’. As a result, 2798 unique papers were found.

Only studies that reported both healthy young and healthy old
adult group results were included. Independent group analysis
resultswereextracted from55studies.Wealso included results from
25 studies that reportedwithin- and between-group analysis results
(i.e. combinedYoung/Old,Young> OldandOld> Young).Combined
task effects were duplicated for each group and task by age
interaction coordinatesweredelegated to each respective age group.
Theoretical papers and reviewswere excluded. Studies that reported
combined group results and a region-of-interest analysis (e.g.,
Rypma and D’Esposito, 2000), reported only brain-behavior correla-
tions (e.g., Springer et al., 2005) or didnot report activation foci as 3D
coordinates in stereotaxic space (e.g., Hazlett et al., 1998) were
excluded because these studies could not bemeaningfully analyzed
with ALE. For studies that contained multiple non-independent
contrasts, the first contrast of interest was included in order to limit
the contribution of any one set of participants to the pool of foci.
Likewise, subsequent papers reporting results from the same group
of participants on a different taskwere also excluded (e.g., Dennis et
al., 2008). Deactivation coordinates were omitted, as were studies
that examined patterns of deactivation (e.g., Daselaar et al., 2005).
For studies containing multiple independent samples, peak activa-
tion foci from each sample were included (e.g., Grady et al., 1994).
The reference lists of included papers were searched for additional
studies that fit these criteria. In total, 77 appropriate papers were
included; threepapers reported two independent samples rendering
80 total experiments for both young and old adults.

Tables 1a and 1b contains a list of all original studies, including
details of each experiment, participants, and imaging modality.
The equivalence of behavioral performance refers to task based
measures such as accuracy and not reaction times, which differed
between young and old in nearly all cases. Forty-four experiments
did not report significant differences between young and old
groups in task performance whereas 36 experiments reported
significantly poorer performance in old adults.

2.2. Creation of ALE maps

The ALE method provides a voxel-based meta-analytic tech-
nique for functional neuroimaging data (Laird et al., 2005;
Turkeltaub et al., 2002). The software (BrainMap GingerALE
v1.1) computes statistically significant concordance in the pattern
of brain activity across any number of independent experiments.
ALE maps are derived based on foci of interest, which comprise
statistically significant peak activation locations from multiple
studies. GingerALE can also compute statistically significant
differences in the pattern of brain activity between two sets of
data from several independent experiments.

Twelve separate ALE analyses were conducted, each yielding an
ALE map and corresponding cluster report: (A) reliable brain
activity combined across all studies in both young and old adults to
identify TPN regions; (B) differences in brain activation patterns in
young and old adults across all studies; (C) differences in brain
activity between young and old adults in studies where perfor-
mance was equivalent; (D) differences in brain activity between
young and old adults in studies where performance was unequal;
and (E-L) Domain-specific patterns of brain activity common to
young and old adults and those that reliably differentiated
between groups. For these analyses we used the studies grouped
into the domains of perception, memory encoding, memory
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Table 1a
Details of included studies. For complete reference, see appendix. See original papers for additional information. Performance refers to task based measures such as accuracy
(not reaction time). Exp., experiment; fMRI, functional magnetic resonance imaging; PET, positron emission tomography.

Exp. First author Year Domain Performance Modality Young Old

N Age Foci N Age Foci

1 Anderson 2000 Memory: Encoding 6¼ PET 12 24.4 23 12 68.5 21
2 Antonova 2009 Memory: Encoding 6¼ fMRI 10 23.6 34 10 72.1 31
3 Backman 1997 Memory: Retrieval 6¼ PET 7 24.3 3 7 63.4 5
4 Bergerbest 2009 Memory: Repetition priming = fMRI 16 28.5 3 15 78.7 7
5 Cabeza 2000 Memory: Retrieval 6¼ PET 12 24.7 5 12 68.6 6
6 Cabeza 2004 Executive/Working Memory = fMRI 20 22.6 15 20 70.3 23
7 Cabeza 1997 Memory: Encoding = PET 12 25.7 13 12 70.5 13
8 Cerf-Ducastel 2003 Perception 6¼ fMRI 6 26.5 25 6 78.5 9
9 Chee 2006 Perception = fMRI 20 21.3 4 17 66.9 0
10 Colcombe 2005 Executive = fMRI 20 23.5 2 40 67.5 3
11 Daselaar 2003 Motor = fMRI 26 32.4 18 40 66.4 24
12 Daselaar 2003 Memory: Encoding = fMRI 17 32.7 4 19 66.4 4
13 Davis 2008 Memory: Retrieval & Perception = fMRI 14 22.2 7 15 69.2 6
14 Dennis 2007 Memory: Encoding = fMRI 16 23.5 18 17 69.3 14
15 Dennis 2008 Memory: Encoding 6¼ fMRI 14 19.4 7 14 68.4 2
16 DiGirolamo 2001 Executive 6¼ fMRI 8 25 31 8 69 47
17 Dreher 2008 Reward Processing = fMRI 20 25 4 13 66 2
18 Duarte 2008 Memory: Retrieval 6¼ fMRI 17 23.6 18 14 62.7 16
19 Duverne 2009 Memory: Retrieval = fMRI 16 21 9 16 71 15
20 Esposito 1999 Executive/Working Memory 6¼ PET 20 18–42 8 21 43–80 6
21 Fernandes 2006 Memory: Retrieval 6¼ fMRI 12 26.3 5 11 71.2 13
22 Freo 2005 Executive/Working Memory = PET 13 27 12 13 65 15
23 Grady 2002 Memory: Encoding = PET 12 23.2 10 11 70 13
24a Grady 1994a Perception = PET 15 26 6 17 67 11
24b Grady 1994b Perception = PET 9 27 9 9 65 11
25 Grady 1998 Executive/Working Memory 6¼ PET 13 25 10 16 66 14
26 Grady 2005 Memory: Retrieval = PET 12 25.6 15 12 70.4 13
27 Grady 2000 Perception 6¼ PET 10 25 26 10 66 34
28 Grady 2006 Memory: Encoding & Retrieval = fMRI 12 23.2 16 16 74.4 16
29 Grady 2008 Executive/Working Memory 6¼ fMRI 16 26.1 5 18 65.8 8
30 Grossman 2002 Executive/Working Memory = fMRI 13 22.6 8 11 63.5 9
31 Gunning-Dixon 2003 Perception/Emotion 6¼ fMRI 8 25.8 13 8 72.3 12
32 Gutchess 2005 Memory: Encoding = fMRI 14 21 26 13 70 32
33 Haut 2005 Executive/Working Memory = PET 8 23.3 6 8 67.3 5
34 Holtzer 2009 Executive/Working Memory 6¼ fMRI 25 19–34 12 25 65–84 17
35 Hubert 2009 Executive/Working Memory 6¼ PET 12 22.4 1 12 65 4
36 Iidaka 2002 Perception/Emotion = fMRI 12 25.1 7 12 65.2 4
37 Iidaka 2001 Memory: Encoding 6¼ fMRI 7 25.7 2 7 66.2 2
38 Johnson 2004 Executive = fMRI 6 19.6 7 6 65.3 6
39 Johnson 2001 Language/Semantic Memory = fMRI 9 31.9 6 9 72.7 5
40 Jonides 2000 Executive/Working Memory 6¼ PET 12 19–30 1 12 61–72 0
41 Kareken 2003 Perception = fMRI 5 27.8 16 6 71 19
42 Kensinger 2008 Memory: Encoding 6¼ fMRI 17 21.6 7 17 73.3 14
43 Kukolja 2009 Memory: Encoding 6¼ fMRI 18 24 3 17 60.3 3
44 Lee 2008 Decision Making 6¼ fMRI 12 29.9 4 9 65.2 7
45 Lee 2006 Executive 6¼ fMRI 12 29.8 0 9 65.2 12
46 Leinsinger 2007 Perception = fMRI 15 28 38 19 71 32
47 Levine 2000 Perception = PET 12 27.3 17 14 62.1 7
48 Madden 2002a Language/Semantic Memory = PET 12 23.6 8 12 65 6
49 Madden 1996 Memory: Encoding = PET 10 22.5 2 10 68.2 0
50 Madden 1999 Memory: Encoding = PET 12 23.2 0 12 71 7
51 Madden 2002b Perception/Attention 6¼ PET 12 23 14 12 66.5 19
52 Maguire 2003 Memory: Retrieval = fMRI 12 32.4 11 12 74.8 13
53 Milham 2002 Executive 6¼ fMRI 12 23 36 10 68 24
54 Miller 2008 Memory: Encoding 6¼ fMRI 17 23.9 19 17 74.9 16
55 Mitchell 2009 Self-relevent processes 6¼ fMRI 21 21.7 1 21 69 2
56 Moffat 2006 Memory: Encoding 6¼ fMRI 30 27.1 25 21 68.4 21
57 Morcom 2003 Memory: Encoding = fMRI 14 21 43 14 68 48
58 Nielson 2006 Memory: Retrieval 6¼ fMRI 15 23.6 2 15 70.4 6
59 Nielson 2002 Executive = fMRI 10 25.5 8 8 75.1 11
60 Nielson 2004 Executive = fMRI 14 29.7 10 14 71.1 24
61 Otsuka 2006 Executive/Working Memory 6¼ fMRI 10 24.5 6 10 68.8 6
62a Paxton 2008b Executive/Working Memory = fMRI 16 21.6 73 16 72.4 55
62b Paxton 2008a Executive/Working Memory 6¼ fMRI 21 22.8 38 20 73 50
63 Rajah 2008 Memory: Retrieval 6¼ fMRI 8 25.6 33 8 72.7 49
64 Raye 2008 Executive = fMRI 15 23 5 14 68 6
65a Reuter-Lorenz 2000a Executive/Working Memory 6¼ PET 8 23.3 9 16 69.9 9
65b Reuter-Lorenz 2000b Executive/Working Memory = PET 10 21.2 6 10 67.4 10
66 Ricciardi 2009 Executive/Working Memory = PET 10 26.2 6 10 68.4 4
67 Rypma 2001 Executive/Working Memory = fMRI 6 25.3 41 6 68.6 46
68 Schacter 1996 Memory: Retrieval 6¼ PET 8 20.5 3 8 67.9 4
69 Smith 2001 Executive/Working Memory = PET 12 22.9 14 12 66.6 11
70 Sperling 2003 Memory: Encoding 6¼ fMRI 10 24.9 16 10 74.1 23
71 St Jacques 2009 Memory: Encoding 6¼ fMRI 15 24.8 23 15 70.2 8
72 Stebbins 2002 Memory: Encoding = fMRI 15 25.3 14 15 76.5 5
73 Stevens 2008 Memory: Encoding = fMRI 12 26.2 0 12 70.2 4
74 Tessitore 2005 Perception/Emotion = fMRI 12 25 15 15 67 15
75 van der Veen 2006 Memory: Encoding 6¼ fMRI 12 25.1 5 12 64.7 8
76 Wierenga 2008 Language/Semantic Memory = fMRI 20 25.1 3 20 74.9 7
77 Zysset 2007 Executive = fMRI 23 26.6 23 24 57.1 30
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Table 1b
Task related details of included studies.

Exp. Experiment Task Comparison task/BASELINE

1 Learning word pairs Encoding word pairs under full attention Retrieving paired word
2 Virtual Morris Water Maze (Arena) Spatial navigation Rest
3 Likability judgments of words Stem completion from learned material Previously unseen stem completion
4 Semantic word judgments New words Repeated words
5 Learning verbal material Item retrieval Temporal-order retrieval
6 Verbal delayed-response Intra-trial memory Baseline
7 Encoding & Retrieval of word pairs Encoding word-pairs Recognition & recall of word pairs
8 San Diego Odor Identification Test Smelling odorant Smelling deionized water
9 Object processing Novel object Old object
10 Flanker Task Incongruent Congruent
11 Serial reaction time task Fixed Random
12 Pleasant/unpleasant noun judgements Subsequently remembered nouns Alternating button press
13 Word recognition & Size comparisons Conjunction of hits Baseline
14 Deese-Roediger-McDermott variant Accurate subsequent memory Baseline
15 N-back of faces High confidence hits Subsequently forgotten items
16 Task-switching Cued switching Fixation
17 Slot machine Anticipation of reward Anticipation of no reward
18 Retrieval of semantically judged drawings Correctly remembered items Correctly rejected new items
19 Retrieval of semantically judged pictures Successful source recollection Correctly rejected new items
20 Wisconsin Card Sorting Task Card sorting to criteria Immediate matching
21 Auditory presentation of verbal material Word recognition from full attention Auditory control
22 Visual working memory for faces Delayed face matching Rest
23 Shallow & deep encoding Old-new judgment of faces Passive viewing of scrambled faces
24a Facial processing Face matching Alternating button press
24b Facial processing Face matching Alternating button press
25 Match-to-sample with faces Delayed face matching Alternating button press
26 Viewing images and words Old-new judgment Silent naming
27 Facial processing Nondegraded face matching Alternating button press
28 Viewing images and words Perceptual & Semantic; Old-New judgments Fixation
29 Auditory 1-back for category and location Sound category repeat Sound location repeat
30 Sentence comprehension task Short antecedent noun-gap linkage (Subject) Pseudofont target detection
31 Facial processing Emotion discrimination Rest
32 Viewing photographs of outdoor scenes Subsequently remembered photographs Subsequently forgotten photographs
33 Number-letter sequencing task (WAIS) Number-Letter Sequencing Number-Letter Span
34 Delayed item recognition task Load-dependent processing for retention delay Baseline
35 Tower of Toronto task Planning and puzzle solving Sequential movement of discs
36 Facial processing Gender judgment to negative faces Size discrimination of rectangles
37 Paired-picture encoding task Concrete-related paired encoding Visual noise control
38 Refreshing information Refreshing previously seen word Seeing previously seen word
39 Semantic Memory Decision Making task Category-exemplar matching Phonological control
40 Verbal Working Memory & Recognition High recency Low recency
41 Olfaction Odor sensation Sniffing
42 Semantic decision task for object drawings Subsequently recognized items Correctly rejected new items
43 Spatial Source Memory Task Correct spatial context encoding False spatial context encoding
44 Risky-gains task Risky decisions Safe decisions
45 Arrow task (Simon task variant) Response incompatable Response compatable
46 Location processing Location matching Button press for abstract image
47 Distinguishing achromatic textures Viewing even textures Viewing random textures
48 Lexical decision task (semantic) Word/nonword Discrimination Letter identification
49 Word identification task Letter encoding Fixation (with manual response)
50 Learning verbal material Living/Non-living word judgment Letter case identification
51 Visual Search Mixed featured target detection with distractors Target detection with single feature
52 Autobiographical memory Autobiographical event recollection Syllable counting
53 Stroop Congruent & incongruent by color Neutral
54 Face–name associative encoding paradigm Subsequently remembered face-name pairs Subsequently forgotten pairs
55 Focused visualization Personal hopes and duties Impersonal semantic concepts
56 Allocentric spatial navigation Learning spatial layout of virtual environment Following cues
57 Animacy decisions about words Correct rememebered Incorrect remembered
58 Recognition of famous faces Enduring Famous Faces Non-famous foils
59 Go No-go Response inhibition Baseline
60 Go No-go Response inhibition Baseline
61 Reading Span Test Reading and Remembering target words Cued button press
62a AX Continuous performance task Goal maintainence from contextual cues Fixation
62b AX Continuous performance task Goal maintainence from contextual cues Fixation
63 Recognition and recency judgments Viewing word pairs Reverse alphabetizing
64 Refreshing information Selectively refreshing word Reading word
65a Verbal working memory Delayed letter matching Immediate matching
65b Spatial working memory Delayed location matching Immediate matching
66 Working memory for faces Encoding, maintenance and recognition of faces Sensimotor control
67 Item-recognition task Six-letter load One-letter load
68 Stem completion Shallow encoding (low recall) Deep encoding (high recall)
69 Operation Span dual-task Math task (Equation verification) Arbitrary button press
70 Face-name association encoding task Novel face–name pairs Fixation
71 Viewing emotional & neutral photographs Subsequently remembered photographs Subsequently forgotten photographs
72 Judgments about words Semantic encoding Perceptual encoding
73 Viewing pictures of faces Subsequently remembered faces Subsequently forgotten faces
74 Facial processing Facial expression matching Geometric shape matching
75 Verbal episodic memory task Correctly Recognized Correctly Rejected
76 Object naming Overt picture naming Passive abstract picture viewing
77 Stroop Incongruent Neutral
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retrieval and executive function. Eight studies did not fall into
these broad domains (see Tables 1a and 1b).

The original studies contributing these foci are presented in
Tables 1a and 1b. Prior to the analysis, coordinates reported in
MNI space were converted to Talairach coordinates using the
Lancaster transformation (Lancaster et al., 2007). In the approach
taken by ALE, localization probability distributions for the foci are
modeled at the center of 3D Gaussian functions, where the
Gaussian distributions are summed across the experiments to
generate a map of inter-study consistencies that estimate the
likelihood of activation for each focus (the ALE statistic). The foci
were modeled using a full-width half-maximum value of 8 mm3.
We then compared the summary of observations against a null
distribution, determined through 5000 permutations of random-
ly generated foci identical in number to those being tested. In
order to determine reliable differences in brain activity between
young and old adults, we tested the null hypothesis that the two
sets of foci were randomly distributed and the observed
difference between them was zero. For all analyses, the false
discovery rate method was employed to correct for multiple
comparisons at p < .01 and subjected to a cluster threshold of
100 mm3 (Laird, Fox et al., 2005). For greater detail of the ALE
method, see Laird, Fox et al. (2005) and Turkeltaub et al. (2002);
for a discussion of meta-analytic approaches to neuroimaging
data, see Wager et al. (2007).

Recently, a new version of GingerALE software was released
(GingerALE 2.0) that models probability distributions at the
experiment level instead of at the level of the foci, changing the
analysis from fixed- to random-effects (Eickhoff et al., 2009). This
version, however, does not yet compute differences between
groups. In an auxiliary analysis not presented here, GingerALE 2.0
was used to calculatewithin groupmaps for all of the contrasts.We
found that all clusters that were significant in the difference
analyses (Young vs. Old) were also significant clusters within each
group in the random effects analysis. All analyses reported in this
paper were conducted with GingerALE 1.1.

Anatomical labels were applied to the clusters using the
Talairach Daemon and visual inspection of the ALEmaps that were
imported into AFNI (Cox, 1996). Coordinates are reported in
Talairach space (Talairach and Tournoux, 1988). In order to rule out
the possibility that one cognitive domain was biasing the age-
related differences when comparing old and young across all
studies (B), equal (C) and unequal (D) task performance, we
determined which studies where contributing foci to age-related
clusters. Unless otherwise stated, clusters from the ALE difference
analyses (B–D) comprised peak foci in studies from all four
cognitive domains. In some cases, significant clusters in the
combined analysis may be driven by one of the age groups. All ALE
maps were transformed from a volume image to an average
multifiducial surface map using Caret software (Van Essen, 2005)
for presentation. Multifiducial surface mapping in Caret maps the
volume to 12 individuals in the atlas and then creates an average of
these maps thereby reducing bias due to individual variability.
Subcortical structures are not displayed.

3. Results

The age of young participants averaged 24.81 years (SD = 2.8)
while that of old participants was 68.81 years (SD = 3.9) across 77
studies. These means do not include three studies that only
reported a range of ages (see Tables 1a and 1b). Sample sizes did
not differ between age groups (t < 1). There were no significant
main effects of age group or performance on the number of foci
contributed to the analysis, nor was the group by performance
interaction significant (F’s < 1). Therefore, differences in the
number and extent of activation likelihood clusters between age

groups cannot be attributed to the number of foci included in the
analysis. Therewas an effect of imagingmodality: fMRI studies had
larger sample sizes (fMRI mean N = 14.54, SD = 6.1; PET mean
N = 11.70, SD = 2.8; Welch’s t = 3.65, p < .001) and reported more
activation peaks (fMRI foci mean = 15.59, SD = 14.2; PET foci
mean = 9.50, SD = 6.9; Welch’s t = 4.02, p < .001).

3.1. Combined ALE results

Fig. 1A shows the regions where the old and young groups
combined had reliable activity across studies, and Table 2 lists the
coordinates of the maxima from these regions. As expected, most
of the active regions were part of the TPN, and included bilateral
DLPFC, vOC, SMA, IPS, FEF and aIfO. Bilateral rostrolateral
prefrontal cortex (RLPFC) was also observed, a region associated
with cognitive control (Koechlin et al., 1999; Vincent et al., 2008).
Additional regions include visual cortex (beyond vOC), superior
temporal gyrus, insula, thalamus and putamen. Some default
network regions were also found, including the PCC, left angular
gyrus and the medial temporal lobes (MTL) bilaterally. Activation
of PCC and medial temporal areas could be due to inclusion of
memory tasks that engage these areas.

3.2. Young and old ALE difference results

3.2.1. Differences across all studies
Overall, ALE differences were observed between young and old

adults primarily in frontal regions corresponding to the TPN (Table 3
and Fig. 1B). Young adults demonstrated reliably greater activation
in right VLPFC and left vOC from the TPN, as well as a region in the
right hippocampus. Old adults had more activity in several TPN
regions including the right DLPFC and PCS. Dorsal to these clusters,
greater activity was also seen in old adults near the superior PCS,
anterior to the FEF (note: studies in the domain of perceptiondid not
contribute foci to this cluster). Additionally, old adults engaged the
left DLPFC and left RLPFC. All of these regions with age differences
overlapped with clusters identified as common to both age groups
(see Table 3), and all but the hippocampuswere consistentwith the
TPN.

3.3. Age differences when performance was equivalent

Given the importance of examining brain activity in the context
of performance, additional analyses were carried out after dividing
the studies based on whether or not performance was equivalent
in young and old adults. In those studies that reported equivalent
performance, differences emerged only in three regions, two of
which were in left lateral prefrontal cortex (Fig. 1C and Table 3).
Young adults had more activity in left VLPFC, whereas old adults
had greater activity in the DLPFC. Both of these regions were
consistent with the TPN (Table 2) and overlapped with clusters
with reliable activation across both age groups shown in Table 2
(see Fig. 1A). Additionally, there was more reliable recruitment of
the left posterior insular cortex in old adults (note: studies in the
domain of memory retrieval did not contribute foci to this cluster).

3.4. Differences when performance was unequal

When those studies reporting unequal performance between
young and old adults were examined, significant and reliable
differences emerged in a number of brain areas. Young adults
reliably activated occipital cortex bilaterally, consistent with the
TPN (Fig. 1D and Table 3). An additional region in the left MTL also
was more active in young adults, but this region did not overlap
with any TPN region. In contrast, old adults reliably engaged right
DLPFC, and PCS (note: studies from the domain of perception did
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not contribute to this cluster), consistent with the TPN. Old adults
who performedmore poorly also activated right RLPFC and the left
thalamus (Fig. 1D and Table 3).

3.5. Domain specific results

Perception, memory encoding, memory retrieval and executive
function independently demonstrated a pattern of activity consis-
tent with the TPN, including reliable clusters in lateral prefrontal

regions, aIfO, SMA, and vOC (Figs. 2–5). These findings are consistent
with a previous large-scale meta-analysis of domain specific
cognition (Cabeza and Nyberg, 2000). Notable domain specific
clusters were also apparent and the results are discussed in turn.

3.6. Perception

Perceptual studies, most of which were in the visual modality,
showed extensive visual cortical activation, as would be expected

Fig. 1.Reliable patterns of brain activity across studies. A: Activation likelihood clusters across all studies and age groups. B: Age differences fromall studies. C: Age differences
from those studies where old and young adults had equivalent performance. D: Age differences from those studies where old adults had poorer performance relative to young
adults. Red = young adults > old adults, Blue = old adults > young adults. Activation likelihood clusters (FDR p < .01) are shown on an inflated surface map in Caret (Van
Essen, 2005). Some clusters may not appear contiguous due to mapping clusters on the surface maps; for example, this can occur when neighboring gyri, but not the
intermediary sulcus, were included in a statistically reliable cluster in the original image volume.
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(Fig. 2E). Due to the emotional nature of some studies (see
Tables 1a and 1b), right amygdala activation was also present (e.g.
Breiter et al., 1996). We anticipated age differences in posterior
regions, which previousworkwould suggest should bemore active
in young adults (Anderson and Grady, 2001; Cabeza et al., 2004;
Davis et al., 2008; Grady et al., 1994). Consistent with this
prediction, young adults hadmore activity during perceptual tasks
than old adults in a number of occipital regions, including bilateral
vOC and extended visual cortex (Fig. 2F and Table 4). Young adults
also had greater activity in the right amygdala while old adults
showed more activation in DLPFC, consistent with a recent
observation of age-related changes in the perception of emotional
stimuli (Roalf, Pruis, Stevens & Janowsky, in press). Older adults
also showed more activation in left aIfO.

3.7. Memory encoding

Encoding information, while not dissimilar to perception,
involves the verified retention of perceived information. Addi-
tionally, comparison tasks are typically matched for perceptual
input. As a result, posterior regions differ in their pattern of
activity. Visual cortical areas active for encoding tended to be
engaged further upstream in ventral temporal cortex, relative to
those active for perception (see Fig. 3G). Additionally, mnemonic
areas, such as retrosplenial cortex and the medial temporal lobes
were engaged. Age-related differences were modest in this
modality. Young adults had more activity in right middle frontal

gyrus and medial temporal lobes, as well as right putamen. In
contrast, old adults had greater activity in right PCS (Fig. 3H and
Table 4).

3.8. Memory retrieval

The pattern of activity seen for retrieval across age groups was
largely consistent with recent ALE meta-analyses of episodic
memory retrieval in young adults (McDermott et al., 2009; Spaniol
et al., 2009), comprising lateral andmedial prefrontal regions, aIfO,
PCC, medial temporal lobes and occipital cortex (Fig. 4I). Notably
absent in the present analysis is engagement of inferior parietal
regions, which may be accounted for by the relatively small
number of studies included (n = 11). Young adults engaged cortex
within the posterior occipital fissure to a greater degree during
memory retrieval, whereas old adults engaged the right RLPFC, left
preSMA and middle temporal gyrus more than the young adults
(Fig. 4J and Table 4).

3.9. Executive function

Tasks of executive function and working memory engaged a
reliable network of lateral parietal and frontal regions in both age
groups (Fig. 5K). As would be expected from the predominance of
frontal activity during tests of executive function, such as working
memory and inhibitory tasks (e.g., Braver et al., 1997; D’Esposito
et al., 1995; Jonides et al., 1998), the differences between young

Table 2
Areas of activation common to both young and old adults (all studies).

Lat Region BA x y z Vol (mm3)

Task positive regions
L DLPFC 9.46 "42 14 22 13904
L VLPFC 47 "51 9 2 176
R DLPFC 9.46 43 17 28 6760
R DLPFC 9 25 5 26 280
R RLPFC 10 29 46 11 1472
L RLPFC 10 "23 49 16 592
L vOC 19.18 "36 "71 "8 6608
R vOC 19.18 31 "84 "3 896
R vOC 19 33 "56 "18 936
R vOC 19 29 "67 "4 776
B SMA 6.32 "1 13 46 6112
R IPS 7 28 "62 40 3504
L IPS 7 "27 "63 34 3416
R FEF 6 27 6 48 880
R FEF 6 29 "9 46 152
L FEF 6 "26 2 52 784
R aIfO 13 41 13 5 280

Other regions
L Fusiform gyrus 20 "39 "31 "15 200
R Lingual gyrus 17 13 "90 "2 176
B Lingual gyrus 18 3 "86 0 120
R STG 22 52 "16 "1 528
L Thalamus "13 "18 6 696
R Thalamus 13 "11 10 272
R Thalamus 7 "24 "2 144
L Putamen "22 4 "1 304
L Putamen "22 "8 11 216
L Insula 13 "28 "26 19 152

Default mode regions
L PCC 31 "4 "54 25 176
L Angular gyrus 40 "42 "54 36 408
L Hippocampus "23 "12 "12 640
L PHC 35 "24 "25 "9 280
R PHC 28 21 "11 "14 240

Abbreviations: Lat, laterality; L, left; R, right; B, bilateral; X, right/left coordinate; Y, anterior/posterior coordinate; Z, inferior/superior coordinate; Vol, volume; aIFO, anterior
insula/frontal operculum; DLPFC, dorsolateral prefrontal cortex; FEF, frontal eye field; IPS, intra-parietal sulcus; LOS, Lateral occipital sulcus;MFG,Middle frontal gyrus;MOG,
middle occipital gyrus; PCC, posterior cingulate cortex, PCS, precentral sulcus; PHC, parahippocampal gyrus; POF, Parietal occipital fissure; RLPFC, rostrolateral prefrontal
cortex; SMA, supplementary motor area; STG, superior temporal gyrus; VLPFC, ventrolateral prefrontal cortex; vOC, ventral occipital cortex.
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and old adults were seen primarily in frontal regions (Fig. 5L and
Table 4). Young adults had more activity in a region of right VLPFC
during executive function. Old adults had more activation in
bilateral DLPFC, right MFG, left SMA and left RLPFC.

4. Discussion

In this quantitative meta-analysis, we demonstrated reliable
age differences in brain activity acrossmultiple cognitive tasks.We
found that the TPN, encompassing the DLPFC, RLPFC, aIfO, IPS, aIPL,
FEF, SMA, vOC and PCS, was robustly active across all studies when
both young and old groups were combined, consistent with the
idea of task-general activation of this network. In addition,many of
the areas with age differences were part of the TPN. Some of these
TPN regions, such as left DLPFC were more likely to differentiate
young and old adults when these two groups performed equally
well. In contrast, when young adults outperformed old adults, right
lateral prefrontal and occipital regions, both part of the TPN, were
more likely to differentiate the groups. For the purposes of
discussing these findings, we will first address age differences in
anterior regions of the brain and then consider posterior regions of
cortex.

4.1. Anterior cortex

Across all studies young adults hadmore activity in right VLPFC,
whereas old adults had more activity mainly in dorsal frontal
regions of the TPN, as well as in RLPFC. This extensive over-
recruitment of frontal regions in old adults is consistent with the
findings of a recent study that also reportedmore activity in frontal
and rostral frontal cortex TPN regions in old adults across multiple
cognitive domains (Grady et al., in press). However, the
performance level of the old adults relative to the young adults
influenced which frontal areas showed an age difference. Themost
notable influence of performance on the age differences in TPN

activity was on the hemisphere that showed an age difference.
When performance in the two age groups was equivalent, old
adults were more likely to activate left DLPFC and young adults
were more likely to activate left VLPFC. These two frontal areas
both have been implicated in cognitive control, but may mediate
different kinds of control. For example, some have suggested that
ventral PFC regions mediate maintenance of information in short
term stores (Dove et al., 2006), or represent the salience of such
information (Seeley et al., 2007), whereas DLPFC mediates
manipulation of information or strategic processes such as
monitoring of behavior (D’Esposito et al., 1999; Moscovitch,
1992; Seeley et al., 2007). Our analysis suggests that, for
equivalent levels of behavioral output, young adults rely more
on control that emphasizes salience or maintenance of informa-
tion, mediated by left ventral PFC, whereas old adults rely more on
strategic control mediated by left dorsal PFC (for a similar
conclusion, see Grady et al., 2003). Old adults also had more
left DLPFC activity during perceptual and executive function tasks
indicating that this strategic control may be utilized primarily for
these non-mnemonic cognitive functions.

In contrast, several regions in right lateral prefrontal cortex
differentiated young and old adults when their performance was
unequal. Two right frontal regions, one in RLPFC (BA 10) and one in
DLPFC (BA 46), showed more activity in poorly performing old
adults. In addition, RLPFC distinguished the age groups during
memory retrieval, where old adults may engage in more top-down
strategic retrieval processes. Executive function tasks also showed
greater engagement of right DLPFC in old adults, suggesting that
this region is not only important for executive function in general

Table 4
Age differences between young and old adults by domain.

Lat Region TPN BA x y z Vol (mm3)

Perception
Young>Old
R MOG x 18 29 "80 5 456
L vOC x 19 "41 "77 "1 416
R vOC x 18,19 33 "68 "6 392
R Amygdala 25 "3 "12 184
L POF 31 "23 "63 13 181
L LOS 19 "18 "62 "9 160

Old>Young
L DLPFC x 46 "41 14 22 912
L aIfO x 13 "26 20 "3 232

Memory encoding
Young>Old
R MFG 9 41 11 32 168
R PHC 27 22 "29 "3 128
L Putamen "21 2 1 128

Old>Young
R PCS/DLPFC x 9 50 4 29 128

Memory retrieval
Young>Old
L POF 31 "13 "61 21 176

Old>Young
L MTG 21 "55 0 "18 232
R RLPFC x 10 22 55 5 144
L preSMA x 6 "9 26 37 112

Executive functions
Young>Old
R VLPFC x 47 38 25 16 224

Old>Young
R MFG/FEF x 6 26 9 46 536
R DLPFC x 46 46 25 22 488
L DLPFC x 9 "46 7 32 344
L RLPFC x 10 "26 45 18 240
L SMA x 6,32 "5 13 44 160

Table 3
Age differences between young and old adults across all studies and by performance.

Lat Region TPN BA x y z Vol (mm3)

All studies
Young>Old
L vOC x 19 "41 "77 "1 360
L Hippocampus 34 "22 "8 "11 208
R VLPFC x 13 40 27 14 144

Old>Young
R Superior PCS/FEF x 6 26 10 47 480
L DLPFC x 9 "41 8 29 392
R DLPFC x 46 45 24 23 304
R PCS/DLPFC x 6 49 2 32 160
L RLPFC x 10 "26 44 19 128

Equal performance
Young>Old
L VLPFC x 47 "47 26 1 136

Old>Young
L DLPFC x 9 "44 7 31 712
L Posterior insula 13 "50 "37 16 152

Unequal performance
Young>Old
L Hippocampus "21 "7 "11 296
L vOC x 19 "40 "80 0 256
R MOG x 18 26 "83 "1 224

Old>Young
R Superior PCS/FEF x 6 26 8 47 632
R DLPFC x 46 46 25 21 384
L Thalamus "11 "17 12 136
R RLPFC x 10 38 44 13 104

Note: TPN=Task positive network. Regions consistent with the TPN are indicated
with an ‘‘x’’.
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(e.g., Stuss and Alexander, 2000, 2007) but that use of these regions
for executive functions increases with age.

Although our understanding of the roles of these frontal areas in
cognitive control is far from complete, the results seen here would
suggest that different kinds of control are brought on line in young
and old adults when required to perform cognitive tasks. Also,
DLPFC activity in old adults is higher at low levels of working

memory demand but then does not increase to the same degree as
seen in young adults when demand increases (Mattay et al., 2006).
All these results, taken together, suggest that brain activity in
young adults has a larger dynamic range than that of old adults;
i.e., young adults can perform relatively easy tasks without
engaging prefrontal cortex but also show larger increases than old
adults when tasks become more difficult. In addition, the

Fig. 2. Perception. E: Combined ALE map. F: Age related differences. Red = young adults > old adults, Blue = old adults > young adults. Activation likelihood clusters (FDR
p < .01) are shown on an inflated surface map in Caret (Van Essen, 2005).

Fig. 3.Memory encoding. G: Combined ALE map. H: Age-related differences. Red = young adults > old adults, Blue = old adults > young adults. Activation likelihood clusters
(FDR p < .01) are shown on an inflated surface map in Caret (Van Essen, 2005).
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hemispheric difference that we noted, left for better performing
old adults and right for poorer performing old adults, is consistent
with a recent hypothesis that age-related recruitment of left
prefrontal activity will increase in order to compensate but right
prefrontal activity is likely to reflect dysfunction of this region
(Rajah and D’Esposito, 2005). It is not clear why left prefrontal
cortex might be more associated with better performance in old
adults, but one possibility is that recruitment of semantic

processes mediated by left prefrontal cortex (Thompson-Schill,
2003; Wagner et al., 2001), and preserved with aging (e.g., Grady
et al., 2006; Madden, 1986; Spaniol et al., 2006), may facilitate
some aspect of cognitive performance.

Age-related differences were also observed in premotor
portions of the TPN, in FEF and SMA/pre-SMA. The SMA has been
reported to be more active in old adults during inhibitory tasks
(Nielson et al., 2002), but not during motor learning (Daselaar et

Fig. 4. Memory retrieval. I: Combined ALE map. J: Age-related differences. Red = young adults > old adults, Blue = old adults > young adults. Activation likelihood clusters
(FDR p < .01) are shown on an inflated surface map in Caret (Van Essen, 2005).

Fig. 5. Executive function. K: Combined ALE map. L: Age-related differences. Red = young adults > old adults, Blue = old adults > young adults. Activation likelihood clusters
(FDR p < .01) are shown on an inflated surface map in Caret (Van Essen, 2005).
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al., 2003); age differences in FEF also have been reported during
saccades (Raemaekers et al., 2006). Old adults showed more
activity than young adults in these premotor areas when old adults
performed more poorly and during executive function and
memory retrieval tasks. Given the role of the FEF and SMA in
the control of motor responses and eye movements (e.g., Boxer
et al., 2006; Everling andMunoz, 2000;McDowell et al., 2008; Petit
et al., 1998; Picard and Strick, 1996; Pierrot-Deseilligny, 1994),
more activity in these areas suggests that old adults require a
greater reliance on cognitive control of motor function than do
young adults (Heuninckx et al., 2005), particularly on those tasks
that make demands on executive functions or memory that old
adults are likely to perform more poorly than young adults. In
addition, this extra activity inmotor planning areasmay reflect the
longer response times and slowing of saccades that are commonly
found in old adults (e.g., Cerella, 1985; Munoz et al., 1998).

4.2. Posterior cortex

Occipital regions also showed reliable age differences,mostly in
favor of young adults. Young adults were more likely to activate
occipital regions bilaterally, particularly relative to poorly per-
forming old adults. In addition, young adults activated a number of
occipital regions more during perceptual tasks in both hemi-
spheres, including TPN regions and other areas not typically
considered part of the TPN. This additional engagement of visual
cortex in young relative to old adults is consistent with previous
reports (Anderson and Grady, 2004; Davis et al., 2008; Madden et
al., 2002, 2004). Indeed, some have suggested that enhanced
engagement of frontal resources by old adults may be in response
to reduced processing by visual cortices (Davis et al., 2008; Grady
et al., 1994). Our meta-analysis result is consistent with this idea
and further indicates that thismay reflect age differences primarily
in the amount or elaboration of perceptual processing rather than
mnemonic or executive processing.

Parietal cortices, including IPS and aIPL, were engaged in all
analyses that combined young and old adults, yet no age-related
changes were seen for these nodes of the TPN. Recent reviews of
the cognitive neuroscience literature suggest that parts of lateral
parietal lobe are involved in the control of attention and memory
functions (Cabeza, 2008; Ciaramelli et al., 2008; Corbetta et al.,
2008; Vincent et al., 2008). Superior parietal cortex, in conjunction
with frontal regions, may control the activity of visual cortex
(Bressler et al., 2008), and inferior regions participate in general
attentional functions as well as attention to spatial locations (Alain
et al., 2008; Wojciulik and Kanwisher, 1999). Age differences in
parietal activity have been reported in old adults in some studies,
mostly involving attentional tasks, in which both increases (Grady
et al., in press; Madden et al., 2007; Townsend et al., 2006) and
decreases (Milham et al., 2002; Rosano et al., 2005) in old adults
have been noted, relative to young adults. We did not examine
attention specifically here, which may account for our failure to
find reliable parietal age differences. On the other hand, the
inconsistency in the literature may indicate that age differences in
parietal cortex are quite dependent on the specific task demands
under investigation. In addition, we also have shown recently that
functional connectivity of the aIPL is maintained in old adults
(Grady et al., in press). This latter result, along with the current
meta-analysis, suggest that the parietal nodes of the TPN are not
especially vulnerable to aging, in general, although this certainly
does not rule out age differences in any given experiment.

4.3. Neurocognitive aging

Broadlyspeaking, it isuseful to considerwhetherour results shed
light on the different interpretations of age differences in brain

activity that have been considered in the literature. With the meta-
analysis reported here, it is not possible to determine individual
differences inbrainactivityandperformance, soa strongcase forany
of the current theories cannot be made. However, our finding that
old adults had more TPN activity, particularly in frontal regions,
might reflect less efficient or effective use of these regions, i.e. ‘less
bang for the buck’. That is, old adultsmay be allocatingmore neural
resources to attentional and cognitive control operations just to
maintain behavioral performance at the level seen in the young. On
the other hand, we did find evidence that use of different subsets of
frontal TPN regions were associated with different behavioral
outcomes in the old adults. This might indicate that some regions,
particularly left DLPFC, are more likely to be compensatory than
others, as suggested above.

Furthermore, reliable patterns of activation across tasks
suggest that the TPN is a useful construct, both in general terms
and for understanding cognitive aging specifically. However,
results from resting-state functional connectivity analysis of MRI
data, which may reflect underlying structural neuroanatomical
networks (Margulies et al., 2009; Van Dijk et al., 2010), suggest
that the TPN can be broken down into sub-components. For
example, dissociations may exist between areas of the TPN
participating in visuospatial attention and cognitive control
(Vincent et al., 2008). Future work will be required to delineate
fully the function and connectivity of brain networks related to
cognition and age-related changes in the functional neuroanato-
my of these networks.

Outside of the TPN, domain specific age differences also were
observed, indicating that one age group or the other may
uniquely activate domain-specific processes. This result would
be consistent with the idea of ‘neural compensation’ suggested
by Stern (2002, 2009), in which old adults use different brain
regions than those used by young adults, because the original
network may not be functioning optimally. This type of
compensation may or may not be associated with performance
equivalent to that seen in young adults, but might nevertheless
help to support behavior. Unfortunately, it is proving difficult to
disentangle these different alternatives (Craik, 2006; Grady,
2008), and our results do not unequivocally support one
interpretation over the others. However, given the clear
differences in activation that characterized better and worse
performing old adults, these results can be used as a starting
point for attempting to clarify the roles of these network subsets
in supporting cognitive function in old adults.

In conclusion, we found that old and young adults showed
activation of a distributed network of regions, the TPN, across a
variety of cognitive domains. We confirmed previous reports that
old adults have more activity in frontal regions, but young adults
recruit visual cortices more than do old adults. We extended this
work to show: (1) theperformancebyold adults on the tasks reliably
influenced the laterality of frontal age differences—left prefrontal
cortex activity was greater in old adults who performedwell on the
tasks and right prefrontal cortex activity was greater in old adults
who performed less well; (2) frontal over-recruitment in old
adultswas seen across cognitive domains, butwasmost extensive
in executive function tasks; (3) age differences in occipital cortex
occurred primarily when there were age differences in perfor-
mance and were driven largely by perceptual functions; (4) other
nodes of the TPN, such as premotor regions, also showed age
differences thatwere largely domain-specific; and (5) the parietal
lobes showed no reliable age differences, suggesting that these
TPN nodes are not generally vulnerable to the effects of age. These
results taken together suggest that old adultsmay recruit the TPN
differently depending on factors yet to be identified, and that this
differential recruitment has an impact on their cognitive
functioning.
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