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Resting-state functional MRI (rs-fMRI) is widely used to noninvasively study human brain

networks. Network functional connectivity is often estimated by calculating the timeseries

correlation between blood-oxygen-level dependent (BOLD) signal from different regions

of interest (ROIs). However, standard correlation cannot characterize the direction of

information flow between regions. In this paper, we introduce and test a new concept,

prediction correlation, to estimate effective connectivity in functional brain networks from

rs-fMRI. In this approach, the correlation between two BOLD signals is replaced by

a correlation between one BOLD signal and a prediction of this signal via a causal

system driven by another BOLD signal. Three validations are described: (1) Prediction

correlation performed well on simulated data where the ground truth was known,

and outperformed four other methods. (2) On simulated data designed to display the

“common driver” problem, prediction correlation did not introduce false connections

between non-interacting driven ROIs. (3) On experimental data, prediction correlation

recovered the previously identified network organization of human brain. Prediction

correlation scales well to work with hundreds of ROIs, enabling it to assess whole

brain interregional connectivity at the single subject level. These results provide an initial

validation that prediction correlation can capture the direction of information flow and

estimate the duration of extended temporal delays in information flow between regions of

interest ROIs based on BOLD signal. This approach not only maintains the high sensitivity

to network connectivity provided by the correlation analysis, but also performs well in the

estimation of causal information flow in the brain.

Keywords: resting-state fMRI, effective connectivity, functional connectivity, functional networks, correlation

analysis

1. INTRODUCTION

Resting-state functional MRI (rs-fMRI) has been widely used to study the intrinsic functional
architecture of the human brain based on spontaneous oscillations of the blood oxygen level
dependent (BOLD) signals (Biswal et al., 1995; Power et al., 2011; Smith et al., 2011; Yeo et al.,
2011). One fruitful approach has been to examine the correlations between rs-fMRI timeseries at
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pairs of regions of interest (ROIs) and use the correlations as a
measure of connectivity strength between each pair (Wig et al.,
2011; Sporns, 2011). The correlation method, though simple,
plays a fundamental role in evaluating functional connectivity
in the human brain for both task-evoked networks (Cole et al.,
2014; Sadaghiani et al., 2015) and resting-state networks (Power
et al., 2013; Hipp and Siegel, 2015; Sadaghiani et al., 2015). The
relationships between correlation and the topological properties,
including small-world organization, modular structure, and
highly connected hubs, has been studied in Zalesky et al. (2012).
However, the direction of information flow between pairs of
ROIs and the causality of information flow cannot be derived
from standard correlation methods. Reliable insight into the
direction and causality of functional connections in the brain
from BOLD signals would provide substantial breakthroughs in
characterizing large-scale brain network dynamics.

The BOLD signal is an indirect and sluggish measure of
neuronal activity. Despite this, substantial insights have been
gleaned by examining patterns of BOLD signals as proxies for
functional connectivity in the brain, and these are consistent
with more direct and invasive observations (Foster et al.,
2015). At every level of analysis, the brain demonstrates an
organized network structure (Bassett and Gazzaniga, 2011). So,
even though neuronal activation occurs on the millisecond
time scale, organized and structured activation patterns are also
observed on the level of seconds, which is within the range of
BOLD signals and is important for understanding cognition.
Causal information about the flow of information in the brain
may be detected and estimated from the BOLD signals. It
remains critical, however, to evaluate methods of investigation
against ground truth simulation in order to validate these
methods.

Numerous methods for estimating functional or effective
connectivity (Van Den Heuvel and Pol, 2010; Friston, 2011)
have recently been evaluated against ground truth networks
using simulated rs-fMRI data (Smith et al., 2011). Functional
connectivity can be quantified with a measure of statistical
dependence such as correlation, whereas effective connectivity
measures the directed causal influence (Friston, 2011). In Smith
et al. (2011), performance of both types of methods across a
range of measures was mixed. Standard and partial correlation
excelled at detecting the presence of a connection. Othermethods
for estimating the direction of a connection varied from chance
(Granger) to greater than 50% accuracy [Patel’s Tau and pairwise
LiNGAM(Linear, Non-Gaussian, Acyclic causal Models)]. These
results suggest that novel methods are needed to estimate
directed connectivity from rs-fMRI data, particularly with a
large number of ROIs, which are necessary for full coverage
of cortical and subcortical areas in the human brain. In this
paper, we introduce a new method, prediction correlation, to the
neuroimaging community and provide an initial validation of the
approach.

Methods for estimating functional connectivity can be
oriented toward estimating a real number describing strength
of connectivity, which might be quite small, vs. estimating a
binary connectivity, which is present or absent, with possibly
the addition of a strength of connectivity, in the form of

a real number, for the case where a connection is present.
Correlation and prediction correlation, which is a generalization
of correlation that we propose in this paper, are methods that
estimate a real number that describes strength of connection.
Subsequent processing can then be applied to remove weak
connections and/or organize the complete network into modular
networks.

As is described in the following sections, testing on simulated
rs-fMRI data with known ground-truth networks (Smith et al.,
2011) demonstrates that prediction correlation is not only
sensitive in detecting network connections, as identified by
standard correlation, but also achieves the highest accuracy on
estimation of connection directionality among all approaches
used in Smith et al. (2011) (Section 3.1). In a “common driver”
phenomena, when ROI 1 drives ROIs 2 and 3 but ROIs 2
and 3 do not directly interact, prediction correlation correctly
detects strong 1→2 and 1→3 connections but not 2→3 or 3→2
connections (Section 3.2). Finally, extending Xu et al. (2014),
we demonstrate the robustness of this method on experimental
data and that prediction correlation recovers previously
identified brain network organization from experimental data
(Section 3.3).

2. METHODS PREDICTION CORRELATION

2.1. Fundamental Method
In what follows, we describe a methodology for analyzing
rs-fMRI data using a generalization of the well-established
correlation approach, which is to correlate the timeseries at
two ROIs. The generalization, denoted by “p-correlation” (“p”
for “prediction”) is to replace correlation between the BOLD
timeseries at two ROIs by correlation between the BOLD
timeseries at one ROI and a prediction of this timeseries. The
prediction is the output of a mathematical dynamical system that
is driven by the timeseries at the other ROI. More generally, the
prediction could be based on several, spatially discrete, ROIs. In
this paper, we focus on the case where only one other ROI is
used. We assume that the dynamical system is linear and has
finite memory and that the memory duration and parameters
may be estimated from the BOLD timeseries. If the prediction
of the timeseries is restricted to use only the current value of the
timeseries that drives the dynamical system, then p-correlation
is the same as standard correlation. Therefore p-correlation is a
generalization of correlation. Features of p-correlation include
(1) the ability to indicate the directionality of the interaction
between two ROIs, (due to the fact that this prediction correlation
is asymmetrical between two signals), and (2) the ability to
evaluate the interaction based on casual information.

In the remainder of this section, we describe the p-correlation
approach in detail. Consider the ordered pair of ROIs (i, j) and
let xi (xj) denote the rs-fMRI timeseries at the ith (jth) ROI. Both
timeseries have duration Nx. The xj signal is predicted from the
xi signal by a linear time-invariant causal dynamical model with
xi as the input and the prediction x̂j|i as the output. This model
can be described by an impulse response, denoted hj|i, which is
zero for negative times. We assume that the impulse response is
of finite duration, with duration denoted by Nhj|i . In summary,
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x̂j|i[n] =

Nhj|i
∑

m=0

hj|i[m]xi[n−m]. (1)

The basic approach to estimate the coefficients of hj|i is to
minimize the least squares cost

J (hj|i) =

Nx−1
∑

n=0

(xj[n]− x̂j|i[n])
2. (2)

We estimate the value of Nhj|i and the values of the impulse
response at the same time by restating the least squares problem
as a Gaussian maximum likelihood estimator (MLE) with a
known variance for the measurement errors. The MLE allows
a trade off of the accuracy of predicting the current data
(i.e., minimizing J ), which is best done by large values of
Nhj|i , with the accuracy of predicting when presented with
new data, which is best done by smaller values of Nhj|i .
There are several approaches to quantifying this trade off
including Akaike information criteria (AIC) (Akaike, 1970, 1974;
Sugiura, 1978; Hurvich and Tsai, 1989, 1993; Cavanaugh, 1997),
Bayesian information criteria (BIC) (Schwarz, 1978), restricted
maximum likelihood (REML) (Thompson, 1962; Patterson and
Thompson, 1971), minimum description length (Rissanen, 1978)
and minimum message length (Wallace and Boulton, 1968). We
have focused on AIC because it leads to easily computed problem
formulations (Equation 3). AIC realizes this balancing goal by
minimizing the sum of two terms, one term that characterizes the
prediction error of the dynamic system through the least squares
costJ (hj|i) and a second term that depends on the durationsNhj|i
and Nx:

AIC =































Nx log(
2π

Nx −Nhj|i
J (hj|i)) if Nx/Nhj|i ≥ 40

+ Nx + Nhj|i

Nx log(
2π

Nx−Nhj|i
J (hj|i)) otherwise

+ N2
x +

N2
hj|i

−Nx + Nhj|i

Nx −Nhj|i
−1 .

(3)

See Equation S1 (Supplementary Material) for BIC.
Simultaneous minimization of Equation 3 with respect to

both hj|i, which occurs only in the J (hj|i) term, and Nhj|i
determines the duration and the value of the impulse response.
The integer minimization over Nhj|i is computed by testing each
value in a predetermined range of values, i.e., 1,2, ..., D seconds.
Then, for each value of Nhj|i , the minimization with respect to
hj|i involves only minimizing J (hj|i). Since the dynamical system
describing how xi influences xj is separate from the dynamical
system describing how xj influences xi, the approach described
here can lead to a directed rather than undirected graph of
interactions between ROIs.

Once hj|i and Nj|i are estimated, the output of the dynamical
system, which is the prediction x̂j|i, can be computed, and then
the correlation of xj and x̂j|i, which is the so-called p-correlation,
denoted by ρj|i, can be computed. We use “correlation” and ρj,i
for the standard approach (i.e., the standard correlation between
xj and xi).

Let the total number of ROIs be denoted by NROI. P-
correlation is an asymmetric NROI × NROI matrix, where the
asymmetry follows from ρj|i 6= ρi|j. Furthermore, p-correlation
includes lags of the xi signal since the dynamical system output
at time n, x̂j|i[n], depends on the input at its current and previous
times, i.e., xi[n], xi[n − 1], . . . , xi[n − Nhj|i + 1]. If Nhj|i = 1
(i.e., no lags) and hj|i[0] ≥ 0 then ρj|i is the correlation between
xj and xi so that ρj|i = ρj,i and the approach of this paper
exactly reduces to the standard approach. In Section 2.2.1, we
describe a constraint such that hj|i[0] ≥ 0 is always achieved.
The p-correlation method does not depend upon the sampling
rate (TR) which allows for collapsing across different scan
sites or studies. The entire algorithm is shown in Figure 1.
Matlab software implementing p-correlation is available at
http://www.mathworks.com/matlabcentral/fileexchange/62781-
pcorrelation.

2.2. Specializations of the Fundamental
Method
In Section 2.1 we defined p-correlation and described a practical
method for its computation. The result is an asymmetric matrix
of connection strengths for each subject. This fundamental
method can be specialized for particular applications, often based
on user’s interests and what the user knows about the details of
the applications. Several such specializations are described in the
following paragraphs.

2.2.1. Constraints on the Least Squares Problems
If the user has information on the type of interactions that are
present, then this information can be used as a constraint on
the least squares problem that determines the impulse response
which is the basis of the prediction. For example, as in the
simulated data of Smith et al. (2011), the interactions are all
positive. Constraining the impulse response values hj|i[n] to be
nonnegative has implications for the values of ρj|i. Let Rj|i be
the covariance of xj and x̂j|i. Rj|i is related to the covariance of
xj[n] and xi[n − m] (i.e., the m-lagged covariance of the two

signals, denoted by Rj,i[m]) by Rj|i =
∑

Nhj|i
−1

m=0 Rj,i[m]hj|i[m]. The
covariance Rj|i is the numerator of ρj|i. Therefore, if all the lagged
covariances are positive and we require the estimated values of
hj|i[m] to be positive then we are assured of getting a nonnegative
value for Rj|i and for the p-correlation ρj|i. In the traditional
functional connectivity analysis, when global signal regression is
applied to rs-fMRI timeseries data, the valid inference of negative
correlations cannot be made (Murphy et al., 2009; Saad et al.,
2012), and only positive correlations are interpreted. In this
situation, the nonnegative “constrained” estimation approach is
appropriate.

2.2.2. Thresholding ρj|i

Three natural methods for thresholding ρj|i are described in this
section.

Even with hj|i[n] ≥ 0, it may be that p-correlation is not
positive because one or more of the m-lagged covariance values
are negative. Therefore, if non-negativity is required, we replace
all negative ρj|i values by zeros. One reason for seeking to have
ρj|i non negative is mean signal regression in the preprocessing
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FIGURE 1 | Block diagram and sub-block diagrams describing the computation of p-correlation for one pair of ROIs.

of the fMRI data which makes it difficult to interpret negative
correlations. However, alternative preprocessing which omits
mean signal regression (Jo et al., 2013) removes this requirement.

The previous paragraph concerned thresholding at value
0. Higher data-dependent minimum thresholds are often
used for correlation and the same approach can be applied

to p-correlaton. A standard approach (Power et al., 2011)
is to order the values of correlation and leave the top s
percent of values unchanged and set the remaining values
to zero. In other words, the threshold γ (s) is set to
be the 100-s percentile of all values in the p-correlation
matrix.
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In some problems the interactions are known to be
unidirectional, e.g., in the simulated data of Smith (Smith et al.,
2011). In this situation, a third thresholding method, which
makes p-correlation unidirectional, is natural. The threshold is
to consider the two transpose-related elements of the matrix and
set the smaller to zero and leave the larger unchanged.

Each of the thresholding methods is a nonlinear operation
applied to the matrix of ρj|i coefficients. Each can be applied to
any matrix M to give an output matrix N, in particular, in the
order of the previous three paragraphs,

Nij =

{

Mij, ifMij ≥ 0

0, otherwise
, (4a)

Nij =

{

Mij, ifMij ≥ γ (s)

0, otherwise
, (4b)

where γ (s) is the 100− s percentile of all values inM, and

Nij =

{

Mij, ifMij ≥ Mji

0, otherwise
. (4c)

The thresholding approach forms a NROI × NROI matrix of
thresholded connection weights, from which the network is
computed.

2.2.3. Averaging over Subjects
Some investigations, e.g., Smith et al. (2011) and Laumann et al.
(2015), are interested in estimating subject-by-subject details,
but in many other investigations on functional networks of
human brain using experimental data, e.g., Power et al. (2011,
2013), Schaefer et al. (2014), and Gordon et al. (2016), there is
averaging over subjects in order to improve the SNR. Just as the
thresholding methods (Section 2.2.2), which are nonlinearities
that can be applied to any matrix, the averaging we use can be
applied to any family of matrices Mk (k ∈ {1, . . . ,K}, where K
is the number of subjects) to give an output matrix N via N =
1
K

∑K
k=1Mk. The functional network estimated by the averaged

p-correlation matrix can be further clustered into sub-networks
through a graphic theoretic analysis.

2.3. Extension to Multi-Subject Processing
There is a recent interest in estimating effective networks from
multiple subjects while accommodating the heterogeneity of the
group (Ryali et al., 2016; Gates and Molenaar, 2012; Smith,
2012). Specifically, the IMaGES algorithm (Ryali et al., 2016)
estimates one generalized network from a group by assuming
all subjects are homogeneous, and the GIMME algorithm (Gates
and Molenaar, 2012) can further refine the estimate for each
individual subject from the general information estimated from
the whole group. IMaGES and GIMME are based on existing
single-subject methods, specifically GES for IMaGES and uSEM
and euSEM for GIMME and, when applied to groups of
appropriate size, both GIMME and IMaGES provide more
accurate estimates of effective connectivity than the single subject
methods on which they are based (Ramsey et al., 2011; Gates and
Molenaar, 2012).

Information concerning groups of subjects could also be used
in p-correlation. One approach would be to replace the hj|i in

Equation 1 by h
g
j|i + hlj|i, where h

g
j|i is the group component

common to all subjects, and hlj|i is the component unique to

the specific subject l. In this approach, Equation 1 would be
generalized to

x̂lj|i[n] =

N
h
g
j|i

∑

m=0

h
g
j|i[m]x

g
i [n−m]+

N
hlj|i

∑

k=0

hlj|i[k]x
l
i[n− k]l (5)

where Nh
g
j|i
and Nhlj|i

are the probably different durations of the

two components of the causal finite-duration impulse response.
There are two issues when using Equation 5. First the AIC
analysis must be generalized in order to determine two impulse
response durations where one is common to the entire group of
subjects. Second, in order to require the least squares to use the
group impulse response and not just set it to zero, a regularizer

such as
∑

N
hlj|i

m=0(h
l
j|i[m])2 must be added to the least squares cost.

While both of these issues can be addressed, in the current paper,
we only focus on the individual analysis, which may be the only
meaningful option under certain circumstances, i.e., a clinical
environment.

3. RESULTS

3.1. Application on Simulated Data
3.1.1. Data Source: Simulated BOLD Timeseries
Simulated fMRI timeseries from the laboratory of S. M. Smith
are documented (Smith et al., 2011) and available on-line
(http://www.fmrib.ox.ac.uk/analysis/netsim/). These timeseries
have been used as benchmark simulated fMRI data for testing
effective connectivity (Ramsey et al., 2011; Smith et al., 2011;
Gates and Molenaar, 2012; Hyvärinen and Smith, 2013). The
simulations are based on a variety of underlying networks of
different complexity and can be described as having three levels.
First there is a neural level which is a stochastic linear vector
differential equation which produces a neural timeseries for
each ROI. Second, for each ROI, there is a nonlinear balloon
model driven by the corresponding neural timeseries which
produces a vascular timeseries. Third, for each ROI, the fMRI
timeseries is the vascular timeseries plus thermal noise. To
simulate preprocessing of fMRI data, a highpass filtered at a
cutoff frequency of 1/200 s was applied to each simulation (most
recently revised on Aug. 24, 2012 based on the website www.
fmrib.ox.ac.uk/analysis/netsim). The current paper considers the
first four sets of simulations from Smith et al. (2011), Sim1−Sim4,
which are the four most “typical” network scenarios provided in
Smith et al. (2011), and which are based on different underlying
networks with sizes 5, 10, 15, and 50 ROIs, respectively.

These synthetic fMRI timeseries were sampled every 3 s (TR=
3s) and the total duration is Nx = 10 mins. All four simulations
have 1% thermal noise and the hemodynamic response function
(HRF) used in the second step has standard deviation of 0.5 s.
The simulation is repeated for each of 50 subjects.
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3.1.2. Specialization on P-Correlation for the

Processing of the Simulated Data

The algorithm is shown in Figure 2. Given that the interactions
are all positive in the simulated data, it is natural to apply the
nonnegative constraint on the least squares problem so that no
negative impulse responses are allowed. Although unconstrained
p-correlation is also computed on the simulated data, looking
forward to Section 3.1.5, the numerical results indicate that the
constrained version is more appropriate.

As is described above, the integer minimization over the
impulse function duration, Nhj|i , is computed by testing from
1 second up to D seconds. Assuming that knowledge of the
behavior of a ROI over the past 15 seconds is sufficient to describe
its effect on a second ROI, we restricted the temporal window
for directional influence between ROIs to no more than 15 s, i.e.,
D = 15 s.

Next, we consider the choice of threshold, s in Equation 4b.
We use this method in order to exploit all of the a priori
knowledge about the simulated data. Since the underlying ground
truth networks for the simulated fMRI timeseries, denoted by aj|i,
are given, the threshold value s is among our prior knowledge
as is described below. We denote ROIs that are involved in the
connections of the ground truth network as active ROIs. All
connections involving the active ROIs are connections of interest
(COIs), including connections that are actually absent such as the
reverse connection in an unidirectional interaction. The value of
s is then the ratio of the number of COIs and the number of all
possible connections, which gives s = 40, 22, 16, and 4 percent
for the four simulations, respectively. An example of computing
s for a 5-node network is shown in Figure 3.

For the Smith simulated data, we have additional prior
knowledge that the networks contain only unidirectional
connections. Therefore, as is also done in Smith et al. (2011),
we compare our estimated network dj|i, which includes the
unidirectional condition, with the ground truth network aj|i. The
estimated network dj|i is the output of Equation 4c where the
input is the thresholded network cj|i.

3.1.3. Performance Criteria
To compare the computed and ground truth networks, we define
“accuracy," denoted by A. In particular, A is defined to be the
mean fractional rate of detecting the correct directionality of true
connections. Specifically, it is defined to be

A =

∑NROI
i=1

∑NROI
j=1 1{aj|i > 0}1{dj|i > 0}

∑NROI
i=1

∑NROI
j=1 1{aj|i > 0}

, (6)

where 1{L} is 1 if L is true, and 0 otherwise. Like the computation
of the “d-accuracy” introduced in Smith et al. (2011),A evaluates
the percentage of the correct directionality (A is between
0 and 1). The threshold operation introduced above (Section
3.1.2) differentiates the performance of directional analytical
methods based on their sensitivity. The more sensitive the
method is, the more true connections it can detect. Notice that
application of the threshold s leads to dj|i values that are almost
certainly far from zero or exactly zero. Computing the accuracyA
after the threshold operation tells the directionality after knowing
the presence of the connections, which enables us to evaluate
the overall performance of sensitivity and directionality of a
directional analytical method.

3.1.4. Alternative Methods for Effective Networks

Estimation
P-correlation and four alternative methods from Smith et al.
(2011), specifically, “Granger B1,” “Gen Synch S1,” “LiNGAM,”
and “Patel’s conditional dependence measure,” were compared
by the accuracy criteria (A), since under both synthetic and
experimental scenarios, these methods have been tested and
have relatively good performances among all the others (Smith
et al., 2011; Dawson et al., 2013). The computation of these
methods were done by software provided by Prof. S.M.
Smith. Granger B1, a pairwise Granger causality estimation
method which provides the best performance among Granger
causality approaches (Smith et al., 2011; Dawson et al., 2013),
uses the Bayesian Information Criterion to estimate the lag

FIGURE 2 | Block diagram describing the specialization of p-correlation for simulated data. Nonzero entries are filled by colored dots with higher values

represented by “hotter” colors and lower values represented by “colder” colors, and zero entries are left as blank in the above matrices.
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FIGURE 3 | Example calculation of the threshold s for a 5-node network. (A) The network with activated ROIs shown in orange. The number of all possible

connections is 52 = 25. (B) The 6 COIs, where the dashed lines are connections that do not existed in the ground truth but still are considered interesting. Therefore,

s = 6/25 for this network.

up to 1 TR. Gen Synch S1 is a nonlinear synchronization
method with respect to the time lag 1 TR. It “evaluates
synchrony by analyzing the interdependence between the
signals in a state space reconstructed domain" (Dauwels
et al., 2010, p. 671). The LiNGAM (Linear, Non-Gaussian,
Acyclic causal Models) algorithm is a global network model
utilizing higher-order distributional statistics, via independent
component analysis, to estimate the network connections. Patel’s
conditional dependence measure investigates the causality from
the imbalance between two conditional probabilities, P(xj|xi)
and P(xi|xj). P-correlation, Granger B1, Gen Synch S1 and
LiNGAM all compute an asymmetric matrix filled with real-
number connection weights, analogous to our cj|i. In all cases,
the unidirectional prior knowledge is applied analogous to
our transformation from cj|i to dj|i. For the Patel method
implemented by Smith et al. (2011), the thresholding operation
was applied on “Patel’s κ bin 0.75” matrix, while the directionality
was determined by “Patel’s τ bin 0.75” matrix.

In addition to the algorithms included in Smith et al. (2011),
IMaGES (Ryali et al., 2016) and uSEM (Kim et al., 2007) which
is the estimation method for resting-state fMRI employed by
GIMME algorithm, have also been tested on the same set of
simulated data (Ramsey et al., 2011; Gates and Molenaar, 2012).
Results reported in Ramsey et al. (2011) and Gates and Molenaar
(2012) show that their estimation based on the single subject is
either similar to or less good than the best-performing method
provided in Smith et al. (2011).

Comparing p-correlation with alternative methods of
estimating effective connectivity, p-correlation provides a
full asymmetric matrix for each subject independent of all
other subjects, in which each entry, like correlation, predicts a
connection strength between two ROIs. The ability to compute
results based on an individual subject means that p-correlation
can potentially be used in a clinical environment. This full
asymmetric matrix of p-correlations can be thresholded as
desired and/or further processed as desired using another
algorithm, i.e., a graph analytic algorithm. In addition, p-
correlation can process networks with hundreds of ROIs
while GIMME is limited to 3–25 ROIs [Page 3 of GIMME
Manual (Version 12)]. Furthermore, p-correlation estimates
the temporal causal relation in the form of lagged impulse
response in addition to the spatial causal relation between any
pair of ROIs. In contrast, some alternative algorithms (e.g.,

IMaGES) estimate a sparse graph of interactions, and thus solve
a somewhat different problem than the p-correlation method.
Other algorithms have been developed as post-processing
algorithms, which cannot detect connections, but only estimate
direction if connections are detected by other methods, e.g.,
correlation. Among them, pairwise LiNGAM (Hyvärinen and
Smith, 2013) achieved success on Smith’s data (Smith et al.,
2011). Several algorithms, such as Patel’s τ , LiNGAM and
pairwise LiNGAM, chose one of the two possible directions for
each pair of ROIs. Such unidirectionality may be appropriate in
some situations. Alternative algorithms, including p-correlation,
provide strengths for both directions, where the two strengths
may be quite different when one direction is dominant.

3.1.5. Results on Simulated Data
Themethods described in this paper were implemented inMatlab
software, which is available upon request, and were applied to
four of Smith’s fMRI simulations (Smith et al., 2011). The four
simulations are Sim1 − Sim4 which have a variable number of
ROIs (5, 10, 15, 50) but no confounding variables.

The p-correlation method is based on estimation of a linear
time-invariant causal dynamic model. The sample means of
the duration of either constrained or unconstrained impulse
responses are 3.34, 3.58, 3.64, and 3.76 s for the four simulations,
respectively. By limiting the impulse response duration to 1
TR, it was verified that p-correlation with constraint on Least
Squares is equivalent to the standard correlation as is described
in Section 1. After thresholding the p-correlations computed
with the nonnegative constraint on the coefficients of the linear
system, an asymmetric matrix of connection weights cj|i for each
subject was obtained.

The same specifications for processing of the simulated data,
in particular, the same choice of the s threshold (Equation 4b)
and the knowledge of unidirectionality (Equation 4c), have
also been applied to the results of four alternative methods
introduced in Section 3.1.4. The performance of all five methods
was evaluated by the accuracy criteria A (Equation 6) for each
subject. Figure 4 shows the input to the accuracy criteria A, i.e.,
aj|i and dj|i, for Subject 14 of Sim2.

The mean and standard deviation of accuracy for each
simulation, i.e., the average and square root of the sample
variance of A (Equation 6) over all 50 subjects, were
computed and the results are tabulated in Table 1. For all
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FIGURE 4 | Images of aj|i (for ground truth) and dj|i (for constrained p-correlation), and quantities analogous to dj|i (for Granger B1, Gen Synch S1,

LiNGAM, and Patel) for Subject 14 of Sim2. Each image uses the same ordering of colors, but has different range of numerical values.

TABLE 1 | Comparison of the mean and standard deviation of accuracy over 50 subjects among different methods.

Simulation 1 2 3 4

# of ROIs 5 10 15 50

# of COI pairs 10 22 36 122

Granger B1 0.440 ± 0.206 0.295 ± 0.127 0.262 ± 0.088 0.130 ± 0.044

Gen Synch S1 0.472 ± 0.201 0.405 ± 0.139 0.379 ± 0.079 0.285 ± 0.056

LiNGAM 0.372 ± 0.229 0.435 ± 0.177 0.301 ± 0.106 0.119 ± 0.037

Patel 0.528 ± 0.193 0.491 ± 0.101 0.446 ± 0.099 0.366 ± 0.048

p-Corr (constrained) 0.532 ± 0.192 0.502 ± 0.114 0.457 ± 0.126 0.405 ± 0.065

p-Corr (unconstrained) 0.520 ± 0.218 0.467 ± 0.123 0.439 ± 0.109 0.371 ± 0.058

The standard deviation tend to be larger on the smaller netowrks (Sim1-Sim4 have 5, 10, 15, 50 ROIs, respectively) because one error is proportionally of larger impact in a smaller

network.

four simulations, constrained p-correlation achieved the highest
accuracy compared to other methods. The unconstrained
p-correlation is less appropriate when applied to a network with
all positive connection weights. We also computed the mean
and standard deviation of A for pairwise LiNGAM, which gives
0.566 ± 0.138, 0.656 ± 0.206, 0.510 ± 0.119, and 0.506 ±

0.056 for four simulations, respectively. The result shows the
highly accurate directionality that pairwise LiNGAM can achieve
in this particular unidirectional network setting. Histograms
displaying the distribution of accuracy for the five methods for
each simulation are shown in Figure 5. The histogram of the
unconstrained p-correlationmethod is included in Figure S1. The
superior performance of p-correlation is demonstrated by the fact
that the bulk of the histogram is further to the right, and the left
tail is less massive.

3.2. The Performance of Correlation and
P-Correlation on Common Drivers
A “common driver” situation is the case where ROI 1 drives
ROIs 2 and 3 but ROIs 2 and 3 do not directly interact. The
challenge is to correctly detect the 1→2 and 1→3 connections
without detecting 2→3 or 3→2 false connections. In order to
focus exclusively on this situation, we have computed synthetic
data from the three-ROI network shown in Figure 6 and
defined by

x1[n+ 1] = a1x1[n]+ b1w1[n] (7)

x2[n+ 1] = a2x2[n]+ a21x1[n]+ b2w2[n] (8)

x3[n+ 1] = a3x3[n]+ a31x1[n]+ b3w3[n] (9)

where w[n] = [w1[n],w2[n],w3[n]]
T is an independent and

identically distributed Gaussian stochastic process with mean 0
and variance I3 (the 3×3 identity matrix). Zalesky et al. (2012)
consider mathematical models of this type and give theoretical
results for correlations. The system is initialized in the steady
state and simulated for 1,000 steps, Nx = 1, 000. We consider
only a1 = a2 = a3 = 0.8 (so that all ROIs have the same intrinsic
memory duration) and b1 = b2 = b3 = 0.2 (so that all ROIs
have the same intrinsic noise power, and the intrinsic noises are
all independent). We consider the following cases: (1) no driving:
a21 = a31 = 0, (2) weak driving: a21 = a31 = 0.1, (3) strong
driving: a21 = a31 = 0.4, and (4) asymmetrical strong driving:
a21 = 0.4, and a31 = 0.1.

Each simulation was repeated for 50 subjects. Let the
maximum allowable duration of the impulse response be 3
samples. By using the specialization of p-correlation for Smith
simulated data, as is described in Section 3.1.2, a directed graph
dj|i is estimated by p-correlation (Figure 2) and the correlation
matrix is computed for each subject. The steady state covariance
of Equations 7–9 is the correlation matrix. In Case (1), the
mean and standard deviation of nonzero entries of ρj|i with
constrained least squares (Section 2.2.1) are 5.384e-04 ± 0.072.
This number becomes 0.058 ± 0.043 when unconstrained least
squares is applied. The smaller magnitude of the results using
constrained least squares indicates that taking advantage of the
prior knowledge that the weights are positive (i.e., a1 = a2 =

a3 = 0.8) provides improved performance in this case. In Cases
(2) and (3), both the constrained and the unconstrained least
squares achieve a 100% accuracy (Equation 6) for each subject.
In the fourth case, the constrained or the unconstrained least
squares gives an average of 0.800 ± 0.247 accuracy over all 50
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FIGURE 5 | Accuracy histogram for Granger B1, Gen Synch S1, LiNGAM, Patel, and constrained p-correlation.

FIGURE 6 | The common driver problem.

subjects. We also tested Nx =200, 500, 5,000 for all four cases.
Notice that as Nx goes large, correlations become closer to the
steady state and the accuracy computed by the p-correlation
method increases as well.

In addition, p-correlation estimated the correct hierarchy on
the three pairs of connection weights, which are consistent with
“strong,” “weak,” and “non-” connections in the ground truth
network. It also shows the correct direction of connections in a
pair by a stronger weight. The constrained least squares (Section
2.2.1) provides a slightly superior result than the unconstrained
approach. Specifically, larger numerical differences between the
zero and nonzero entries, as well as between the asymmetric
strong weights, were shown. On average across all 50 subjects, p-
correlation used an impulse response duration of 1.007 samples
for all four cases for both constrained and unconstrained
approaches. In addition, in Case (3) (asymmetric strong weights),
correlation mis-detected the connection between node 2 and
3, specifically the 2–3 correlation was the highest correlation
value among the three pairs, whereas p-correlation, for both the
constrained and unconstrained approaches, estimated this value
as the lowest of the three pairs thereby avoiding the error in the
correlation results.

3.3. Performance On Experimental fMRI
Data
While the tools described in this paper can be assembled
into many algorithms, we use only one algorithm, which is
shown in Figure 7, to further characterize (Xu et al., 2014), a
cohort of 132 subjects from the 1,000 Functional Connectomes
Project (http://www.nitrc.org/projects/fcon_1000/) (Biswal et al.,
2010). This data is provided from different scanning sites,
and thus has variable sampling rates (TRs = approximately
1–3 s, mean ± standard deviation of 2.3 ± 0.4s). The scan
duration also varied from 119 to 295 TRs (mean standard
deviation of 167.5 ± 41.7). The data from the whole brain were
preprocessed (Anderson et al., 2011), linearly detrended and
bandpass filtered (retaining signal between 0.001 and 0.1Hz), and
motion scrubbed (Power et al., 2012) with the threshold set to 0.2.
The preprocessed rs-fMRI BOLD signal was extracted fromNROI

= 264 spherical ROIs each with a 10mm diameter. We combine
our p-correlation ideas with the widely-used (Power et al., 2011,
2012; Lahnakoski et al., 2012; Gordon et al., 2016) Infomap
graph analytical algorithm (Lancichinetti and Fortunato, 2009)
to determine networks within the set of 264 ROIs.

As a function of the value of the threshold s, Infomap creates
a variable number of networks. Following Power et al. (2011,
Figure 1), the network stability over a range of threshold s ∈

{2, . . . , 10} using correlations and p-correlations are shown in
Figure 8, in which different networks are represented by different
colors. Similar to Power et al. (2011) (the first figure in Figure 8),
we note that the assignment of ROIs to networks remains
relatively constant over all values of the threshold s, illustrated by
the constant horizontal bands in different colors. Also, networks
are hierarchically refined as s rises. In summary, the number of
networks increases as the value of s decreases, and p-correlation
replicated the brain network organizations that were detected by
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FIGURE 7 | Block diagram describing the specialization of p-correlation for the experimental data. Nonzero entries are filled by colored dots with higher

values represented by “hotter” colors and lower values represented by “colder" colors, and zero entries are left as blank in the above matrices.

FIGURE 8 | The stability of networks across various thresholding criteria (s). The white regions indicate ROIs that belong to networks with less than four ROIs.

correlation. The network results are consistent with the network
organizations detected in Power et al. (2011).

In order to test the robustness of the p-correlation calculation,
all 132 subjects were randomly divided into two equal cohorts,
and each cohort was separately processed. The average of p-
correlation connection strength ρ+

j|i across all subjects in the

cohort, which is denoted by ρ̄+
j|i , is shown as a scatter plot

in Figure 9A [in Figure 9, all (0,0) points are removed]. The
linear least squares prediction of Cohort 2 from Cohort 1
is a close fit to the data (r2 = 0.87) and is nearly a
45◦ diagonal line (ρ̄Cohort 2

j|i = 1.013ρ̄Cohort 1
j|i + 0.032), thereby

indicating the robust nature of p-correlation. Following the same
procedure, the average of correlation connection strength ρ+

i,j

across all subjects in the cohort, which is denoted by ρ̄+
i,j , is

shown in Figure 9B. Comparing Figures 9A,B indicates that
the p-correlation achieves the same robustness as correlation.
Additional plots in which no points are removed are included in
the Figure S2.

4. DISCUSSION

Standard correlation has been widely used to analyze functional
connectivity from rs-fMRI timeseries between prespecified ROIs.
Prior work has shown its high sensitivity for detecting the
existence of network architectures under both simulated and

FIGURE 9 | Scatter plot of results for the two cohorts. (A) P-correlation.

(B) Correlation. The red line is the Least Squares fit for predicting Cohort 2

from Cohort 1. Only positive values are used in the Least Squares calculation

and shown in the plot.

experimental scenarios (Smith et al., 2011; Dawson et al., 2013).
This paper describes methodology for analyzing rs-fMRI data
using a generalization of well-established correlation ideas. The
generalization, denoted by “p-correlation” (“p” for “prediction”),
is to compute the correlation between the jth signal and an
optimal linear time-invariant causal estimate of the jth signal
based on the ith signal. In this way, it captures additional features
concerning the interaction between two ROIs, specifically, the
causality and directionality of the information flow on which
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the interaction depends. Based on the finite-memory linear
time-invariant causal model, p-correlation allows the memory
duration to be different in the two directions for one pair of ROIs
and also to be different for different pairs of ROIs. In contrast,
structural vector autoregressive models (Kim et al., 2007; Chen
et al., 2011) are assumed to have the same memory duration
across all ROIs. P-correlation is a generalization of standard
correlation ideas because, if the estimate of the jth signal based
on the ith signal is restricted to use only the current value of the
ith signal, then p-correlation and standard correlation have the
same magnitude.

Testing p-correlation on simulated fMRI data provided in
Smith et al. (2011), the greater performance accuracy of p-
correlation, which uses lagged information from the BOLD
timeseries, demonstrates the importance of causal information
which is missing in standard correlation. In our results, the
mean duration of the impulse response estimated by AIC using
a search limited to a maximum duration of 15s was roughly 4s.
In these data, a search extending to 15 s is not a restriction on
the maximum duration. As is described in Table 1, the accuracy
of p-correlation on the simulated data of Smith is about 0.5
(0.405–0.532).While higher levels are desirable, this performance
exceeds the performance of many alternative algorithms on all
four sets of simulations.

Many approaches have been introduced to assess functional
or effective connectivity of rs-fMRI data. Smith et al. (2011)
evaluated the validity of 38 approaches (Smith et al., 2011,
Figure 4) using simulated BOLD signals and a variety of
performance measures. The methods tend to have different
levels of performance for different measures, e.g., detection of a
connection vs. determination of the direction of a connection.
The p-correlation approach introduced in this paper depends on
causal dynamical models and so we focus on this particular aspect
of previous work. Dynamic Causal Modeling (DCM) has been
used with some success to assess causal dynamics in fMRI data by
relying on sophisticated models of neural dynamics. As discussed
in Smith et al. (2011, p. 878), most existing DCM algorithms
require knowledge of external inputs (which are not known for
rs-fMRI) although some variations may not (Daunizeau et al.,
2009); all versions tend to be mathematically poorly conditioned;
and all versions fail to scale to networks with large numbers of
ROIs which are necessary for experimental studies. In contrast,
the p-correlation approach described in this paper scales similarly
to a correlation approach for which hundreds of ROIs are not a
challenge (Xu et al., 2014).

Several versions of Granger causality analysis, based on
multivariate vector autoregressive modeling, have been tested
and performed poorly (Smith et al., 2011). Granger causality
relies on regression and comparison of two predictions. The first
prediction is based purely on an autoregressive model of the
signal at the ith ROI based on the past of the same signal. The
second prediction is based on regression of the signal at the ith
ROI based on the past of the signal at the jth ROI and, possibly,
an autoregression as in the first case. The sample covariances of
the prediction errors are then combined, essentially by taking the
ratio of the sample covariances scaled by integers describing the
amounts of data, to yield a statistic that is distributed according

to the Fisher-Snedecor F distribution. This statistic, indexed by
i and j, is used to fill an asymmetric matrix. Although both are
based upon lagged information there are important differences
between p-correlation and Granger causality. P-correlation is not
a statistic comparing two possible dependencies but rather is a
statistic measuring the accuracy of prediction using a particular
dependency. The motivation for the Granger causality statistic
is dependent on the original Gaussian assumptions on the
errors when linear regression is used to describe the ROI time
series. P-correlation is based on just the sample variance of the
prediction error and does not have a Gaussian motivation which
is advantageous if the BOLD signals lack Gaussian structure.
Multivariate autoregressive processes have been used as the basis
for generative models for complete sets of ROIs. Such models,
which focus on the effect of the past on the present, can be
combined with structural equation modeling (SEM) models,
which focus on contemporaneous effects (Chen et al., 2011).

Multivariate autoregressive processes (MVAR) have been
successfully used in neuroscience outside of fMRI, e.g., in order
to describe signals from EEG experiments (Ding et al., 2000;
Kus et al., 2004; Babiloni et al., 2005; Wilke et al., 2008;
Blinowska et al., 2009; Korzeniewska et al., 2011; Ligeza et al.,
2016). Both MVAR, e.g., Equation 1 in Kus et al. (2004),
and the linear regression model used in this paper (Equation
1) are regression models which predict one timeseries from
either all timeseries which include oneself (MVAR) or from
the past of another timeseries (Equation 1). Both predictions
are characterized by impulse responses. The method introduced
in Kus et al. (2004) determines the connection strength based
on the impulse response, whereas p-correlation determines the
functional connectivity based on both the impulse response
and the original timeseries. Existing literature, e.g., Valdes-Sosa
(2005) and Davis et al. (2016), has shown the robust estimation
of the MVARmodel by introducing sparse regression techniques,
and the success of estimating functional connectivity through
the sparse MVAR models. In addition, a conditional MVAR
model, e.g., Ch 17.3 in Schelter et al. (2006), may also be used
to address the common driver problem. Other approaches to
examining BOLD signal propagation using lags, as is done in p-
correlation, have been highly reproducible (Mitra et al., 2015). In
this paper, a linear regression model (Equation 1) is used as the
predictor in p-correlation to estimate the causal relation between
a pair of BOLD signals. Other lag-based predictors, e.g., MVAR
based models, can also be adapted into the p-correlation concept,
however, they would not have the result that duration of 1 sample
(e.g., no lags) gives standard correlation.

In addition to the algorithms used in Smith et al. (2011),
which estimate the directional connectivity for single subject data
sets, the IMaGES (Ryali et al., 2016; Ramsey et al., 2011) and
GIMME (Gates and Molenaar, 2012) algorithms use a group of
subjects. While these algorithms provide better performance in
situations where groups of subjects can be analyzed collectively,
both algorithms have challenges. The sparse graph estimated
by IMaGES for a group of subjects does not tell the strengths
of the connectivity and “will not reflect the variation of a
group” (Mumford and Ramsey, 2014, p.571). Similar to DCM’s
limitation on scalability, small networks with less than 25
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ROIs are well analyzed by the GIMME algorithm. However, its
performance on large-scale functional networks is not known.
As p-correlation can work with hundreds of ROIs, it can be
used in evaluating large-scale brain networks. Furthermore, p-
correlation can work on individual subjects so it potentially
could be applied to patient clinical data. Other algorithms that
estimate direction after a connection is already detected also
exist (Section 3.1.4). While such algorithms may be useful in
some circumstances, they do not allow for situations where both
directions are present but of different strengths.

The Smith et al. (2011) simulated data has lower
dimensionality than experimental brain data. For instance,
in the simulation, connections are all unidirectional while
most neural connections are bidirectional. Additionally, in
the simulations, most connections had a value of exactly zero.
Furthermore, it introduces unrealistic noise and it has a large
number of parameters that must be set and which influence the
resulting simulation (Wang et al., 2014). While the Smith et al.
(2011) simulated data is not completely realistic and it is not
a perfect test of p-correlation, this data continues to be used
(Smith et al., 2011; Gates and Molenaar, 2012; Ramsey et al.,
2011; Hyvärinen and Smith, 2013; Ramsey et al., 2010), and the
results continue to be discussed (Geerligs et al., 2016). In this
paper, we leveraged the same data used in Smith et al. (2011) for
comparison with other published metrics, providing a broader
context for these findings. We hope to use a broader range of
simulated data to further validate p-correlation in our future
work.

In order to focus on the challenges of a “common driver,”
we have produced additional synthetic data for the three ROI
network of Figure 6 in which one ROI drives two other ROIs but
the two other ROIs do not directly interact. Using p-correlation
in this network we found that p-correlation can identify the
existence and direction of the interactions between the driving
ROI and the other two ROIs (even when the two interactions
are of different strengths). Furthermore, p-correlation did not
introduce false interactions between the two driven ROIs.

We have applied p-correlation to experimental data from
the 1,000 Functional Connectome Project (Biswal et al., 2010).
The p-correlation approach successfully replicated the modular

architecture of the local and distributed networks previously
reported using standard correlation (Xu et al., 2014) (see Section
3.3, Figure 8). Highly correlated p-correlation values on the
two different cohorts also demonstrated that the p-correlation
is highly reproducible and thus robust on experimental data. A
current limitation of the p-correlation approach is that missing
nodes cannot be accommodated, thereby limiting an extension
of this approach to lesioned populations.

Here we introduce a novel concept, the p-correlation, to
estimate brain connectivity within well-characterized large-scale
functional networks. The replication of previously observed
network architectures in experimental data and the performance
against the ground truth in simulated data, both suggest
that the p-correlation approach may hold promise for future
investigations of the brain’s dynamic functional architecture.
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