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a b s t r a c t 

The macro-scale intrinsic functional network architecture of the human brain has been well characterized. Early 

studies revealed robust and enduring patterns of static connectivity, while more recent work has begun to ex- 

plore the temporal dynamics of these large-scale brain networks. Little work to date has investigated directed 

connectivity within and between these networks, or the temporal patterns of afferent (input) and efferent (output) 

connections between network nodes. Leveraging a novel analytic approach, prediction correlation, we investi- 

gated the causal interactions within and between large-scale networks of the brain using resting state fMRI. This 

technique allows us to characterize information transfer between brain regions in both the spatial (direction) and 

temporal (duration) scales. Using data from the Human Connectome Project ( N = 200) we applied prediction 

correlation techniques to four resting-state fMRI scans (each scan has TRs = 1200). Three central observations 

emerged. First, the strongest and longest duration connections were observed within the somatomotor, visual, 

and dorsal attention networks. Second, the short duration connections were observed for high-degree nodes in the 

visual and default networks, as well as in the hippocampus. Specifically, the connectivity profile of the highest- 

degree nodes was dominated by efferent connections to multiple cortical areas. Moderate high-degree nodes, 

particularly in hippocampal regions, showed an afferent connectivity profile. Finally, multimodal association 

nodes in lateral prefrontal brain regions demonstrated a short duration, bidirectional connectivity profile, con- 

sistent with this region’s role in integrative and modulatory processing. These results provide novel insights into 

the spatiotemporal dynamics of human brain function. 
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. Introduction 

Human brain function at rest (i.e. in the absence of task) is char-

cterized by coherent and persistent patterns of regional interactions

rganized into spatially distributed, large-scale networks ( Cole et al.,

014 ). These intrinsic patterns emerge from repeated co-activation

f afferent (input) and efferent (output) connections among brain re-

ions ( Stevens and Spreng, 2014 ). Resting-state functional magnetic

esonance imaging (fMRI), which examines the low-frequency spon-

aneous fluctuations in blood oxygen level dependent (BOLD) signals

 Biswal et al., 1995 ), is widely used to investigate the intrinsic func-

ional architecture of the brain. Substantial progress has been made

n delineating large-scale functional brain networks using resting-state

unctional connectivity (RSFC) (e.g., Biswal et al., 1995 ; Power et al.,
∗ Corresponding author. 

E-mail addresses: im.nan.xu@gmail.com (N. Xu), pd83@cornell.edu (P.C. Doerschu

R.N. Spreng). 

ttps://doi.org/10.1016/j.neuroimage.2020.117628 

eceived 2 September 2020; Received in revised form 21 November 2020; Accepted 

vailable online 13 December 2020 

053-8119/© 2020 The Authors. Published by Elsevier Inc. This is an open access ar

 http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
011 ; Yeo et al., 2011 ). The most commonly used method for measuring

SFC is to calculate a pairwise correlation coefficient between the low-

requency BOLD signals of a set of priori determined brain regions of in-

erest (ROIs). These correlation matrices may then be used to model the

patial topology of functional networks and sub-networks ( Sporns, 2011 ;

ig et al., 2011 ). 

In the last decade, substantial efforts have been devoted to identify-

ng the spatiotemporal structure of these RSFC-derived brain networks.

owever, comparatively less effort has been focused on identifying di-

ectional or ‘effective’ connectivity patterns. Several computational ap-

roaches have been suggested to explore directed intrinsic connectiv-

ty (e.g., Blinowska et al., 2009 ; Chen et al., 2011 ; Kim et al., 2007 ;

oebroeck et al., 2005 ; Xu et al., 2017 ). In parallel, several studies have

evealed that correlated, yet temporally asynchronous, patterns of BOLD
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ignals may reflect the timing of information transfer in the brain (e.g.,

oelman et al., 2017 ; Mitra et al., 2015 ; Xu et al., 2017 ; Yuste and

airhall, 2015 ). Together, these advances open the possibility of iden-

ifying not only the spatial properties of these intrinsic brain networks

ut also the direction and rate of information flow through this network

rchitecture. 

We have developed a novel statistical approach, prediction corre-

ation (p-correlation, Xu et al., 2017 ) to measure the direction and

emporal profile of intrinsic functional connections. P-correlation pro-

ides a single analytical technique to characterize the strength, direc-

ion, and timing of connections simultaneously. We have validated the

-correlation approach using synthetic data for direction estimation

nd resting-state fMRI (rs-fMRI) data to estimate connection strength

 Xu et al., 2017 ). Specifically, testing on the simulated fMRI timeseries

rom the laboratory of S.M Smith ( Smith et al., 2011 ) which are avail-

ble on-line ( http://www.fmrib.ox.ac.uk/analysis/netsim/ ), the perfor-

ance of p-correlation was numerically compared with and has outper-

ormed a list of alternative effective connectivity estimation methods, in-

luding Granger causality, against the ground truth. In addition, testing

n the experimental data from the 1000 Functional Connectomes Project

 http://www.nitrc.org/projects/fcon_1000/ ) ( Biswal et al., 2010 ), the

apability of p-correlation in recovering the previously identified net-

ork organization of the human brain by the standard correlation

as demonstrated. As p-correlation decomposes asynchronous pairwise

unctional interactivity, we are able to derive ‘direction’ as well as

duration’ information to characterize node to node connectivity profiles

ithin and between networks. This approach is in contrast to symmetric

stimates of RSFC as measured by standard Pearson correlation meth-

ds. To distinguish these measures from standard pairwise, symmetric

unctional connectivity (FC) measured by Pearson correlation, we refer to

he functional interactivity measured by p-correlation as directed func-

ional connectivity (directed FC) and directed RSFC for intrinsic network

easures obtained at rest. 

In the current study, we apply p-correlation to rs-fMRI data to inves-

igate the directed intrinsic functional connectivity of the human brain.

o characterize the temporal flow of information through the networks,

e first identified the duration (long versus short) of asynchronous con-

ections across the brain and their spatial overlap with known intrin-

ic brain networks. Next, we examined the asymmetry of the pairwise

patiotemporal functional interactivity. Our reasoning here was that p-

orrelation decomposes the pairwise functional interactivity to inward

nd outward information transfers, providing directional estimations.

o our best knowledge, this is the first work in which the brain-wide

patial and temporal patterns of pairwise functional interactivities are

ointly examined. 

. Methods 

.1. Participants and data preprocessing 

The rs-fMRI data of 200 randomly-selected unrelated individu-

ls were downloaded from the Human Connectome Project 500 Sub-

ects + MEG2 dataset (https://www.humanconnectome.org/study/hcp-

oung-adult/document/500-subjects-data-release) ( Marcus et al., 2011 ;

an Essen et al., 2012 ). This cohort of 200 participants was aged 22–36

ears (mean age = 28.9 + − 3.5 years), with 126 women. 

The rs-fMRI data were collected at Washington University in St Louis

nd the University of Minnesota with the same sampling rate, 𝑇 𝑅 =
 . 72 s. Each subject has 4 complete rs-fMRI scans, and each scan has

200 time samples, i.e., 𝑁 𝑥 = 1200 . Other acquisition parameters in-

lude TE = 33.1 ms, flip angle = 52°, FOV = 208 × 180 mm (RO x PE), Ma-

rix 104 × 90 (RO x PE), Slice thickness = 2.0 mm with 72 slices and

.0 mm isotropic voxels, Multiband factor = 8, Echo spacing = 0.58 ms,

nd BW = 2290 Hz/Px. 

The rs-fMRI data were first preprocessed following the procedures

etailed in ( Glasser et al., 2013 ) to remove spatial distortions, motion
2 
rtifacts, and reduce field bias. This procedure also registered the func-

ional and anatomical images and normalized the data to standard space.

he output fMRI data was then denoised by the ICA-FIX approach as

escribed in detail in ( Griffanti et al., 2014 ; Salimi-Khorshidi et al.,

014 ). Finally, the preprocessed rs-fMRI BOLD timeseries were extracted

rom 333 ROIs ( 𝑁 𝑅𝑂𝐼 = 333). These were centered in 333 discrete brain

arcels provided in Gordon et al. (2016) . In the remainder of the paper,

e refer the resulting dataset as the extracted rs-fMRI timeseries. 

In addition to the extracted rs-fMRI timeseries, shuffled data and

hase randomized data were also generated. The generation procedures

nd results are detailed in the Supplementary Methods and Results. The

urpose of data shuffling or randomizing the phase of the data is to ran-

omize the spatiotemporal dynamics of the original rs-fMRI timeseries.

hese results can then be used to contrast the spatiotemporal structure

stimated from the original data to validate the analytical approach un-

er testing. 

.2. Mathematical description of the spatiotemporal functional interactivity

The spatiotemporal functional brain activity may be decomposed

nto two components, 1) the spatially directed FC and 2) the temporal

urations of information transfer of this directed FC. In this section, we

riefly review the mechanism of prediction correlation (p-correlation)

ntroduced in Xu et al. (2017) and describe how these two patterns are

stimated from p-correlation. 

Let 𝑥 𝑖 and 𝑥 𝑗 be the BOLD signals of 𝑁 𝑥 samples which come from the

 th ROI and the 𝑗th ROI, respectively. P-correlation of the ordered pair

 𝑥 𝑖 , 𝑥 𝑗 ) involves several computational steps. The first step estimates

he duration of information transfer from the 𝑖 th ROI and the 𝑗th ROI.

pecifically, the output signal 𝑥 𝑗 is predicted from the input signal 𝑥 𝑖 
hrough a linear time-invariant causal dynamic model that characterizes

he information transfer, and the prediction, denoted by 𝑥 𝑗|𝑖 , has the

orm 

 𝑗|𝑖 [ 𝑛 ] = 

𝑁 𝑗|𝑖 −1 ∑
𝑚 =0 

ℎ 𝑗|𝑖 [ 𝑚 ] 𝑥 𝑖 [ 𝑛 − 𝑚 ] , (1)

nd 𝑥 𝑗 [ 𝑛 ] = 𝑥 𝑗|𝑖 [ 𝑛 ] + 𝜀 [ 𝑛 ] , (2) 

here ℎ 𝑗|𝑖 is a 𝑁 𝑗|𝑖 -length impulse response vector which has the first

otentially non-zero term occurred at time of 0 s, and 𝜀 is the prediction

rror. The current sample of the output signal 𝑥 𝑗 is always effected by

 𝑗|𝑖 time lags of the input signal 𝑥 𝑖 . Hence, the duration of the directed

nformation transfer has 𝑇 𝑅 ⋅𝑁 𝑗|𝑖 seconds. The optimal solution for 𝑁 𝑗|𝑖 
s determined by Bayesian information criterion (BIC) through testing

rom 1 up to 𝐷 

𝑇𝑅 
samples to minimize the prediction error. In this study,

e restrict the temporal window for directional influence between ROIs

o be no more than 15 s, i.e., 𝐷 = 15 s. 

The second step estimates the strength of the RSFC between the or-

ered pair ( 𝑥 𝑖 , 𝑥 𝑗 ), denoted by p-corr ( 𝑥 𝑖 , 𝑥 𝑗 ) . Specifically, a correlation

etween the predicted signal 𝑥 𝑗|𝑖 and the original BOLD signal 𝑥 𝑗 is com-

uted. 

 - corr 
(
𝑥 𝑖 , 𝑥 𝑗 

)
= corr 

(
𝑥 𝑗|𝑖 , 𝑥 𝑗 

)
, (3) 

Note that if the signal 𝑥 𝑗 and its prediction 𝑥 𝑗|𝑖 are significantly cor-

elated, i.e., the result of Eq. (3) is high, then the likelihood of a directed

nformation transfer as modeled in Eqs. (1 )–(2) is high. The significance

f the p-correlation can be determined by a p-value test. The p-value at

hich the null hypothesis of zero p-correlation is rejected (probability

hose small value indicates a significant p-correlation) can be computed

y following the procedure in Press et al. (2007) . 

As described in Xu et al. (2017) , p-correlation is able to replicate

reviously observed modular network structures in the resting brain

 Power et al., 2011 ). Thus, p-corr ( 𝑥 𝑖 , 𝑥 𝑗 ) can be used to evaluate the

trength of RSFC from 𝑖 th ROI to the 𝑗th ROI. However, unlike the stan-

ard correlation, p-correlation is asymmetric between the two signals 𝑥 
𝑖 

http://www.fmrib.ox.ac.uk/analysis/netsim/
http://www.nitrc.org/projects/fcon_1000/


N. Xu, P.C. Doerschuk, S.D. Keilholz et al. NeuroImage 227 (2021) 117628 

a  

a  

g  

s  

t

 

m  

t  

o  

t

2

 

t  

t  

i  

s  

t  

t  

s  

f  

t  

r  

t  

u  

s  

(

 

d  

f  

t  

w  

t  

w  

r  

o  

t  

e  

c  

P  

m  

F  

o  

v  

F  

w  

h  

S

 

d  

t  

r  

c  

i  

r  

t  

o  

i  

d  

e  

t

 

i  

w  

t  

m  

o  

o  

o  

F  

a  

p  

d  

d  

t  

F  

f  

o  

w  

r  

t  

t  

t  

d  

l  

m  

f  

t  

a  

T  

5  

R  

p  

(  

w  

𝐻  

n  

e

a  

l  

R  

l  

c  

a  

h  

S

 

t  

t  

u  

d  

F  

i  

t  

b  

(  

d  

i  

t

3

3

 

c  

g  
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H  
nd 𝑥 𝑗 . Specifically, p-corr ( 𝑥 𝑖 , 𝑥 𝑗 ) ≠ p-corr ( 𝑥 𝑗 , 𝑥 𝑖 ) and 𝑁 𝑗|𝑖 ≠ 𝑁 𝑖 |𝑗 . The

symmetry between p-corr ( 𝑥 𝑖 , 𝑥 𝑗 ) and p-corr ( 𝑥 𝑗 , 𝑥 𝑖 ) leads to a directed

raph between two brain regions in the spatial scale. In addition, the

eparate estimations for 𝑁 𝑖 |𝑗 and 𝑁 𝑗|𝑖 characterizes the interactions in

he temporal scale. 

For the whole-brain fMRI timeseries, two 𝑁 𝑅𝑂𝐼 ×𝑁 𝑅𝑂𝐼 asymmetric

atrices were generated by p-correlations. One is a connectivity ma-

rix including p-correlation values (e.g., p-corr ( 𝑥 𝑖 , 𝑥 𝑗 ) from Eq. (3) ). The

ther is a duration matrix including the duration of the information

ransfer (e.g., 𝑇 𝑅 ⋅𝑁 𝑗|𝑖 ) estimated from Eq. (1 –2 ). 

.3. Analytical procedures 

In this section, the analytical procedures for investigating the spa-

iotemporal structure estimated from p-correlation are described. First,

he spatial pattern and the temporal pattern of the functional interactiv-

ty were determined by p-correlation using the extracted rs-fMRI time-

eries. Specifically, a directed FC matrix and a duration matrix was de-

ermined by averaging the connectivity matrices and the duration ma-

rices across all scans of all 200 subjects, respectively. To validate the

patiotemporal patterns estimated by p-correlation on the extracted rs-

MRI timeseries, the directed FC matrix and duration matrix were con-

rasted with the results of the shuffled data and the results of the phase-

andomized data (see Supplementary Methods and Results for more de-

ails). Seven functional networks provided in Yeo et al. (2011) were

sed in the remainder analysis, which include Somatomotor (SM), Vi-

ual, Dorsal, Ventral, Default, Frontal parietal (FP), and Limbic networks

see Supplementary Methods and Results for more details). 

Next, we investigated the dominant network properties driven by

irected RSFC with the long and short duration of information trans-

er in the human brain. In particular, the long durations of informa-

ion transfers determined by the top 4% values in the duration matrix

ere compared with the strongest connections as determined by the

op 4% values in the functional matrix. The threshold of the top 4%

as selected because the community detection algorithm Infomap can

oughly detect the 7 distinct Yeo networks drawing from the top 4%

f the directed FC matrix estimated by p-correlation as is described in

he Supplementary Methods and Results. A similar finding was discov-

red by using the same algorithm on p-correlation or correlation matrix

omputed from a different dataset in the 1000 Functional Connectomes

roject (Fig. 8 ( Xu et al., 2017 )). Specifically, major distinct Power com-

unities ( Power et al., 2011 ) were detected at the threshold of 4% (see

ig. 8 in ( Xu et al., 2017 )). The directed RSFC with the short durations

f information transfer were determined by the smallest 4% nonzero

alues in the duration matrix which has p-value < 0.05 in the directed

C matrix. To ensure the robustness of the results, the same analysis

as performed on two split cohorts from the 200 participants, each co-

ort with 100 participants, and the results are shown in Section 3 of

upplementary Methods and Results. 

The functional interactivity among networks was evaluated for the

irected FC matrix as well as the duration matrix, and is described in

he Supplementary Methods and Results. During the analysis of the di-

ected RSFC with short durations, we observed that the short duration

onnections are driven by “hub ” that either aggregates the incoming

nformation from (inward) or propagates information to (outward) the

est brain cortex (as is described below in Section 3.2 ). We computed

he degree of each ROI, which is the total number of edges that converge

n that ROI ( Buckner et al., 2009 ; see also Power et al., 2013 ). Specif-

cally, given the directed short duration matrix determined above, the

egree of each “inward ROI ” is the total number of nonzero entries in

ach matrix column, whereas the degree of each “outward ROI ” is the

otal number of nonzero entries in each matrix row. 

Then, we assessed the asymmetry between the inward and outward

nformation transfer for each ROI. In particular, the following five steps

ere performed. First, a matrix containing the standardized z-scores of

he pairwise directed FC was computed, namely the directed FC z-score
3 
atrix. Similarly, a directed duration z-score matrix was computed. Sec-

nd, the lower off-diagonal entries were subtracted from their upper

ff-diagonal counterparts (referred to as the afferent-efferent, or inward-

utward differences in the remainder of the paper) in both the directed

C z-score matrix and duration z-score matrix. Third, the sample mean

nd standard deviation of the inward-outward differences were com-

uted, denoted by ( 𝜇𝐹𝐶 , 𝑠𝑡 𝑑 𝐹𝐶 ) for the directed FC inward-outward

ifferences and ( 𝜇𝐷 , 𝑠𝑡 𝑑 𝐷 ) for the directed duration inward-outward

ifferences. In addition, the correlation between the upper and lower

riangular entries was computed for each of the two z-score matrices.

ourth, to test if the inward-outward differences are significantly dif-

erent from a mean of zero, a one-sample hypothesis test was set up

n the sample mean of inward-outward differences for directed FC as

ell as for the directed duration, respectively. Specifically, for the di-

ected durations case, the null hypothesis 𝐻 0 ∶ 𝜇𝐷 = 0 was tested against

he alternative 𝐻 1 ∶ 𝜇𝐷 ≠ 0 . The same hypothesis test was set up for

he directed FC case (e.g., 𝐻 0 ∶ 𝜇𝐹𝐶 = 0 versus 𝐻 1 ∶ 𝜇𝐹𝐶 ≠ 0 ). Because

he sample size for these two sample distributions of inward-outward

ifferences are both 𝑁 𝑠𝑎𝑚𝑝𝑙𝑒 = ( 𝑁 

2 
𝑅𝑂𝐼 

− 𝑁 𝑅𝑂𝐼 )∕2 = 55 , 278 , the central

imit theorem holds, implying that the two distributions are approxi-

ately normal (p.228-p229 Montgomery and Runger, 2010 )). There-

ore, a z-test was formed for each of these two hypothesis tests with

he test statistics 𝑍 𝐹𝐶0 = 

√
𝑁 𝑠𝑎𝑚𝑝𝑙𝑒 𝜇𝐹𝐶 

𝑠𝑡 𝑑 𝐹𝐶 
for the directed FC strength case

nd the test statistics 𝑍 𝐷0 = 

√
𝑁 𝑠𝑎𝑚𝑝𝑙𝑒 𝜇𝐷 

𝑠𝑡 𝑑 𝐷 
for the directed duration case.

he two z-tests were separately evaluated at a significance level of 𝛼 =
% following the test procedure as described in p.302 ( Montgomery and

unger, 2010 ). Fifth, we tested which inward-outward differences sam-

le between the directed FC and duration has a mean closer to zero

e.g., 𝜇0 = 0 ). Specifically, a two-sample hypothesis test was set up

ith the null hypothesis 𝐻 0 ∶ |𝜇𝐷 − 𝜇0 | = |𝜇𝐹𝐶 − 𝜇0 | and the alternative

 1 ∶ |𝜇𝐷 − 𝜇0 | > |𝜇𝐹𝐶 − 𝜇0 |. Because both 𝜇𝐹𝐶 and 𝜇𝐷 turned out to be

egative in the third step calculation, the proposed two-sample hypoth-

sis test becomes equivalent to a two-sample z-test with 𝐻 0 ∶ 𝜇𝐷 = 𝜇𝐹𝐶 

nd 𝐻 1 ∶ 𝜇𝐷 < 𝜇𝐹𝐶 , and the test statistics 𝑍 0 = 

√
𝑁 𝑠𝑎𝑚𝑝𝑙𝑒 ( 𝜇𝐷 − 𝜇𝐹𝐶 ) √

𝑠𝑡𝑑 2 
𝐷 
+ 𝑠𝑡𝑑 2 

𝐹𝐶 

. Fol-

owing the procedure described in p.355, Eq. (10- (2) ( Montgomery and

unger, 2010 ), this two-sample z-test was evaluated at a significance

evel of 𝛼 = 5% . To demonstrate the robustness of the test results con-

erning the inward-outward differences, the five-step procedure was

lso performed on two split cohorts from the 200 participants, each co-

ort with 100 participants, and the results are shown in Section 6 of

upplementary Methods and Results. 

Finally, due to the novelty of the directed duration matrix estima-

ion, its inward and outward asymmetries were examined in more de-

ail. Specifically, for each of the 333 ROIs, the row mean and the col-

mn mean of the duration matrix were computed to give the average

urations of the inward and outward information transfers, respectively.

urthermore, the duration matrix was partitioned into 7 × 7 subblocks,

n which the diagonal subblocks include the connectivity within func-

ional networks and the off-diagonal subblocks include the connectivity

etween different pairs of networks. The average duration of the inward

outward) information transfer for the 𝑖 th functional brain network was

etermined by computing the mean and standard deviation of entries

n the 𝑖 th column (row) partition excluding the 𝑖 th diagonal subblock of

he duration matrix, for 𝑖 =1 , … , 7 . 

. Results 

.1. Long duration rs-fMRI network connectivity 

The directed FC matrix and the duration matrix estimated from p-

orrelation is shown in Fig. 1 (a) and Fig. 1 (b), respectively. Note that

lobal signal regression was not applied to rs-fMRI data in the current

tudy due to the current controversial effects ( Murphy and Fox, 2017 ).

ence, p-correlation values are mostly positive in Fig. 1 (a). As shown,
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Fig. 1. The directed duration matrix and 

the directed functional connectivity matrix of 

resting-state functional networks determined 

by p-correlations. In these asymmetrical matri- 

ces, ROIs along the rows propagate information 

to the ROIs along the columns. The strongest 

directed FC and the longest information trans- 

fers are shown in (c) and (d), respectively. 

Seven colored diagonal blocks in each matrix 

depict the seven different networks including 

SM (blue), Visual (purple), Dorsal (green), Ven- 

tral (pink), Default (red), FP (orange), Limbic 

(gray). 
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1 The # is consistent with the order of the 333 ROIs provided in 

Gordon et al. (2016) . 
rganized patterns are demonstrated in both the directed FC and dura-

ion matrices. In particular, the strong connections are concentrated in

he diagonal blocks, suggesting that connections within each functional

etwork on average are stronger than the ones between this network

nd the other networks. Similar to the directed FC matrix, the high val-

es of the duration matrix are also concentrated within the diagonal

locks, with high overlap between strong and long duration functional

onnections. The correlation between the directed FC matrix and the

uration matrix was computed for each scan of each subject. The aver-

ged correlation value turns out to be 0.64 + − 0.06 across 4 scans and 200

ubjects for the extracted rs-fMRI timeseries. As a comparison, the cor-

elation between the two matrices was also computed for each scan of

he five phase-randomized subjects (see Supplemental Methods and Re-

ults Table S1). As a result, the averaged correlation across 4 scans and

ve subjects is, however, only 0.27 + − 0.03, in contrast to the averaged

orrelation value without randomizing the phase which is 0.65 + − 0.05. 

The top 4% of values in either of these two matrices are further

hown in Fig. 1 (c) and (d), respectively. The strongest directed con-

ections and the longest durations occur primarily within-networks,

ncluding the SM, visual and ventral systems. Longer durations were

lso observed between networks (e.g. SM - Visual networks). On the

ther hand, directed functional interactivities within the limbic system

ave much lower values in both matrices comparing to other func-

ional networks. This may be due to the low temporal SNR of the

MRI timeseries of the limbic ROIs. Similar results were reported in

ig. S1 ( Power et al., 2011 ) using 1000 Functional Connectomes Project

 http://www.nitrc.org/projects/fcon_1000/ ) ( Biswal et al., 2010 ). 

.2. Short-duration rs-fMRI network connectivity 

The duration matrix and the corresponding directed RSFC matrix

ith short information transfers as described in Section 2.3 are shown

n Fig. 2 (a) and (b), respectively. In each of these two matrices, nonzero

ntries demonstrate the duration or strength of the directed RSFC with

hort information transfer. The directed RSFC is further rendered on the

rain cortex in Fig. 2 (c). The smallest 4% nonzero values in the dura-

ion matrix (without considering the p-value for p-correlations) and the

orresponding connectivity matrix are shown in Figure S8 of Supple-

entary Methods and Results. In Fig. 2 (a) and (b), the directed RSFC

ith short information transfer has an average duration of 743.19 ms + 
− 

4 
0.04 ms, and has an average strength of 0.10 + − 0.04. While the vari-

bility of both functional strengths and duration is low in these two ma-

rices, a “hub-like ” structure appears to be the dominant feature among

hese connections. We discuss this in the next paragraph. 

High degree ROIs are those with extensive functional connections

elative to other brain networks. These may serve as information pro-

essing hubs ( Buckner et al., 2009 ; see also Power et al., 2013 ). As ob-

erved in Fig. 2 , the short duration connections are dominated by sparse

ows and columns with widespread connections throughout the brain, in

ontrast to the long duration connections that are dominated by denser

nd modular connections as shown in Fig. 1 (c). These sparse rows and

olumns represent high degree ROIs. Further, rows with dense dotted

ines of the two matrices shown in Fig. 2 suggest that these high degree,

hort duration hubs primarily are dominated by efferent connections to

ther ROIs and networks, and we name them as “outward brain hubs. ”

owever, the columns with less dense dotted lines in the two matri-

es in Fig. 2 also identify short duration, high degree hubs that show a

redominantly afferent, or inward, connectivity pattern, and these hubs

ere named “inward brain hubs. ”

High-degree outward and inward brain hubs are displayed on cor-

ical maps in Fig. 3 (a) and (b), respectively. Efferent or outward brain

ubs with the highest degree are located in the visual system and the

efault system, in particular, the angular gyrus. Specifically, the top 5

utward brain hubs ( Fig. 3 (a)) are #263 in Visual (degree 181), #259 in

efault (degree 121), #140 in Visual (degree 110), #94 in Default (de-

ree 88), #6 in Default (degree 63). 1 Afferent (or inward) brain hubs

ith high degrees are primarily located in the limbic system. The top

4 inward brain hubs ( Fig. 3 (b)) include #178 in Limbic (degree 31),

19 in Limbic (degree 27), #135 in Limbic (degree 21), #18 in Limbic

degree 18), #11 in Limbic (degree 18), #314 in Limbic (degree 17),

144 in Limbic (degree 17), #300 in Limbic (degree 15), #118 in Lim-

ic (degree 15), #312 in Limbic (degree 14), #142 in Limbic (degree

4), #304 in Limbic (degree 13), #296 in Limbic (degree 13), and #295

n Default (degree 13). 1 Both afferent and efferent hubs show high hemi-

pheric symmetry. The efferent hubs have higher degree values than the

ubs that demonstrate a more afferent, or inward, pattern of directed

onnectivity. To demonstrate the robustness of the results, the top in-

http://www.nitrc.org/projects/fcon_1000/
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Fig. 2. Short information transfer, characterized by the 

shortest 4% nonzero 𝑁 𝑗|𝑖 values and p-correlations with p- 

value < 0.05. The duration matrix (a) and the directed func- 

tional connectivity matrix (b) of the short information trans- 

fer in rs-fMRI. In both matrices, ROIs along the rows propa- 

gate information to the ROIs along the columns. Seven colored 

diagonal blocks in (a) and (b) depict the seven different net- 

works as described in the legend (right). (c) The brain regions 

and the directed functional connections with the shortest in- 

formation transfer are displayed on the brain cortex. The color 

of the arrow from cool to warm colors represents the dura- 

tion from long to short. The thickness of the arrow represents 

the strength of the connectivity. In total, 1001 directed func- 

tional connections are demonstrated. Seven colored diagonal 

blocks in (a) and (b) as well as the node color in (c) depict 

the seven different networks including SM (blue), Visual (pur- 

ple), Dorsal (green), Ventral (pink), Default (red), FP (orange), 

Limbic (gray). A modified version of BrainNet Viewer toolbox 

( Xia et al., 2013 ) was used. 

Fig. 3. Brain hubs displaying short information transfer in function networks. The node color represents the brain system of visual (purple), default (red), and limbic 

(white). The node size is proportional to the hub degree in each subfigure. 
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ard and outward hubs were also plotted for each of the two randomly

plit cohorts in Section 3 of the Supplementary Methods and Results. 

.3. Asymmetries between the inward and outward information transfer 

Asymmetries between inward and outward information transfer ex-

st in both the directed FC matrix and duration matrix for every pair of
5 
OIs ( Fig. 1 ) as well as for every pair of functional networks (Fig. S2). To

isualize the asymmetries in detail, the information of the connectivity

trength ( Fig. 1 (a)) and duration ( Fig. 1 (b) matrices are shown in Fig. 4 .

his figure displays the top 25 strongest directed connections within,

oing out of, and coming into each of the seven functional brain net-

orks. The top 50, 75, and 100 strongest directed connections within,

oing out of, and coming into each of the seven functional brain net-
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Fig. 4. Spatiotemporal functional interactivity in resting-state brain networks. The top 25 strongest connections within (a), coming into (b), and going out of (c) 

each of the seven functional brain networks is visualized by a modified version of BrainNet Viewer toolbox ( Xia et al., 2013 ). The duration and the strength of 

the information are jointly displayed. In particular, the color of the arrow from cold to hot represents the duration from long to short. The thickness of the arrow 

represents the strength of the connectivity. So, stronger and longer connectivity has a thicker and warmer colored arrow. ROIs in each of the seven networks share 

the same network color as shown in the legend of Fig. 3 (right). 

6 
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Table 1 

The average duration (ms) of the inward and outward informa- 

tion transfer and their differences for each network. 

Direction Network Inward Outward Inward-Outward 

Differences 

SM 1205 + 
− 
345 1371 + 

− 
517 −166 + 

− 
643 

Visual 1581 + 
− 
527 1130 + 

− 
370 451 + 

− 
659 

Dorsal 1355 + 
− 
442 1186 + 

− 
392 169 + 

− 
565 

Ventral 1198 + 
− 
396 1313 + 

− 
457 −115 + 

− 
586 

Default 1199 + 
− 
389 1071 + 

− 
301 127 + 

− 
502 

FP 1257 + 
− 
296 1063 + 

− 
295 195 + 

− 
402 

Limbic 862 + 
− 
150 1218 + 

− 
355 −355 + 

− 
389 
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orks are in Figure S9-S11 in the Supplementary Methods and Results.

n addition, the top 1% strongest directed connections within, going out

f, and coming into each of the seven functional brain networks are in

ig. S12. These figures clearly show that the inward-outward asymme-

ries are much more pronounced for the duration versus the strength

stimates, and this pattern is observed for every network and even for

very ROIs. 

Statistically, each pair of ROIs has an average of inward-outward

ifferences of −0 . 02 + − 0 . 25 (i.e., 𝜇𝐹𝐶 = −0 . 02 , 𝑠𝑡 𝑑 𝐹𝐶 = 0 . 25 ) in the z-

cores of directed RSFC strengths, and of −0 . 08 + − 1 . 38 (i.e., 𝜇𝐷 =
0 . 08 , 𝑠𝑡 𝑑 𝐷 = 1 . 38 ) in the z-scores of durations. Then, z-test statistics

s 𝑍 𝐹𝐶0 = −19 . 755 < − 𝑍 

𝛼

2 
for the directed FC strength case, and it is

 𝐷0 = −13 . 765 < − 𝑍 

𝛼

2 
for the duration case. In other words, the two

-tests, one for the inward-outward differences in directed FC strength

nd the other for the inward-outward differences in duration, both reject

he hypothesis of a zero-mean at a significance level of 𝛼 = 5% . More-

ver, the correlation between the upper and lower triangular entries

f the z-score matrix of directed FC strength is as high as 0.9682. In

ontrast, this value becomes as low as 0.0464 for the duration z-score

atrix. This indicates the duration of the pairwise connections having

 higher degree of asymmetry comparing to the directed FC strength.

his is further validated by the two-sample z-tests. Specifically, the two-

ample z-test statistics 𝑍 0 = −9 . 9836 < −1 . 645 = − 𝑍 𝛼 , which rejects the

ull hypothesis at a significance level of 𝛼 = 5% . The p-value of this

est 𝑃 ( 𝑍 ≤ 𝑍 0 ) = 1 . 7982 × 10 −23 is almost close to zero, which provides

trong statistical evidence that the inward-outward differences in dura-

ion are greater than the inward-outward differences in FC strengths.

he histograms of z-scores of all pairwise directed RSFC strengths and

urations, as well as their inward-outward differences, are shown in Fig.

11. 

We next evaluated the asymmetries in the duration matrices in more

etail. Average durations for inward and outward information transfer

or each network as well as their differences are presented in Table 1 .

isual and Limbic networks show the greatest inward-outward differ-

nces in duration. In contrast, the Ventral and Default networks have

ore similar inward and outward connections in duration. The dura-

ion of information transfers for the SM, Ventral, and Limbic networks

re generally shorter for inward versus outward connections, whereas

ll other networks show the reverse pattern, with shorter duration out-

ard versus inward connections. Overall, the Limbic, Ventral, and De-

ault networks have the shortest inward information transfers, whereas

P, Default, and Visual networks have the shortest outward information

ransfers. 

Average durations of the inward and outward information transfers

nd their differences for each ROI are displayed in Fig. 5 . Examining

pecific asymmetry patterns, the occipital lobe (Visual and Dorsal ROIs)

isplays the greatest temporal asymmetry with the longest inward and

hortest outward durations. In contrast, the Limbic ROI shows the re-

erse pattern, with the shortest duration inward connection but the

econd-longest outward connection. The Ventral and SM ROIs show a

omewhat more balanced duration pattern, albeit with overall longer
7 
utward than inward durations. ROIs within the PFC show the most

quivalent inward and outward pattern, with nearly identical durations

~1300 ms). Finally, as observed in Fig 5 , there are nodal differences in

uration asymmetry within networks. For example, the Default network

recuneus ROI shows a longer inward and shorter outward duration pat-

ern, whereas the medial prefrontal ROIs of the default network shows

hower inward and shorter outward duration patterns. 

. Discussion 

Here we used a novel approach, p-correlation, to estimate the di-

ection and duration of information transfer within a resting-state fMRI

ataset. The p-correlation method decomposes the traditional pairwise

unctional interactivity into inward and outward functional connectiv-

ty. The connection strength, as well as the duration of the information

ransfer, are estimated for each direction. This method enables us to

easure the direction (inward versus outward) and the duration (long

ersus short) connectivity profiles for all ROI-ROI pairs. The resulting

hole-brain, directed functional connectivity and duration matrices re-

ealed distinct network and regional patterns of spatiotemporal connec-

ivity within the resting brain. 

Note that the duration of information transfer from one region to

nother as is estimated in this paper is distinct from the time delay

or a signal sent from one region to another. The ‘duration of infor-

ation transfer’ in our definition refers to the length of time that the

nformation is embedded within a communication channel (i.e., a func-

ional connection). While the time delay for transferring one informa-

ion unit between regions may be dependent on the physical distance

etween those regions, the ‘duration of information transfer’, which is

epresented as the input versus output delay, is not necessarily distance

ependent. 

Long vs . short duration connections . Long duration information trans-

ers are observed within the somatomotor, visual, and dorsal atten-

ion networks. These long duration connections are highly overlapping

ith the stronger directed connections ( Fig. 1 ). The shortest informa-

ion transfers, on the other hand, are driven by multiple high-degree

utward brain hubs in the visual and default systems (i.e., rows with

ense dotted lines in Fig. 2 ) as well as several moderate high-degree

nward brain hubs in the hippocampus (i.e., columns with less dense

otted lines in Fig. 2 ). The outward hubs, that segregate information

rom the visual or the default systems to the other cortical regions (as

hown in Figs. 2 (c) and 3 (a)), in particular, are consistent with the pre-

ious findings of functional hubs in the cuneus of the visual system

 Tomasi and Volkow, 2011 ) as well as the angular gyrus of default mode

ystem ( Andrews-Hanna et al., 2014 ). Our results further suggest that

he role of these high-degree brain hubs is actively propagating the in-

ormation to, instead of receiving the information from, other brain re-

ions on a short temporal scale. In addition, the inward brain hubs in

he limbic system which aggregate the information from the cortex (as

hown in Figs. 2 (c) and 3 (b)), is consistent with the idea that resting-

tate brain function supports the memory consolidation ( Gordon et al.,

014 ; Miall and Robertson, 2006 ; Stevens et al., 2010 ; Stevens and

preng, 2014 ; Tambini et al., 2010 ). In our recent study, we have shown

hat the limbic regions, in particular, have greater contributions from

igh-frequency activity ( Keilholz et al., 2020 ), which may play a role in

etermining the duration of information transfer . The inward and out-

ard hubs were previously investigated on an average whole-brain level

 Yan and He, 2011 ). Specifically, several functional hubs in the default

etwork including the precuneus on average perform more like inward

ubs than outward hubs as compared to other functional hubs. In con-

rast, functional hubs in the attentional network on average perform

ore like outward hubs. Our results extend these findings by suggest-

ng specific contexts (e.g., at a short duration of information transfer) in

hich node-wise hubs may act differently from network averages. 

Inward and outward asymmetry of the information transfer. In contrast

o many other lag-based analytical approaches which assume the tem-
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Fig. 5. The average duration (ms) of the information transfer coming from and going into each of the 333 ROIs provided in Gordon et al. (2016) . For (a) and (b), 

the shortest information transfers have warm colors, while the longest information transfers have cool colors. Both inward and outward information transfers are 

displayed in the same colormap. For (c), the cool colors depict greater inward than the outward information transfers, while warm colors depict greater outward 

than the inward information transfers. 
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oral lags that are pairwise identical, e.g., ( Mitra et al., 2015 ; Raut et al.,

020 ), we assume the functional interactivity can be pairwise asymmet-

ic not only in the connection strength but also in the duration of the

nformation transfer. In other words, ongoing information transfer in

oth forward and backward directions may simultaneously present in

oth spatial and temporal scales. Our findings, however, revealed only

odest differences in the strength of directed pairwise connections (i.e.

nward versus outward). Yet, there were striking asymmetries observed

n the duration of these directed connections. This observation, as shown

n Fig. 4 , is persistent for every network and even for most ROI-ROI

airs. Previous studies have observed variability in lag-based tempo-

al patterns ( Bright et al., 2017 ; Raut et al., 2019 ; Smith et al., 2011 ),

owever, by splitting the study group, we have demonstrated that the

symmetries in duration are significant in comparison with asymmetries

n strengths on an average level, and moreover, the duration of outward

nformation transfer is significantly longer than the duration of the in-

ard information transfer on average for each of the split groups. Fur-

hermore, Fig. 4 , which demonstrates the strongest directed connections

ithin, going out of, and coming into each of the seven functional brain

etworks, provides a detailed description of the spatiotemporal func-

ional interactivities on the brain cortex which may further our under-

tanding of human cognition. In the end, the brain-wide duration of the
8 
nformation transfer was examined in more detail. As shown in Fig. 5 ,

isual processing regions, including the precuneus, show longer dura-

ion of inward, or afferent, connections relative to shorter duration of

utward, or efferent, connections. In contrast, regions of the limbic sys-

em show longer duration of outward, or efferent, connections relative

o shorter duration of inward, or afferent connections. This is consistent

ith its role in consolidation processes, particularly involving medial

emporal lobe regions (p. 313, Purves et al., 2008 ; Schwab et al., 2018 ).

he prefrontal cortex on the other hand displayed inward and outward

onnections that were similar in duration, consistent with the role of this

egion as a heteromodal hub with dense, reciprocal connection to the

est of the cortex ( Baars and Gage, 2013 ; Mesulam, 1998 ). Notably, the

nward-outward differences in duration of information transfer as shown

n Fig. 5 (c) demonstrate close correspondence to the latency structure

iscovered in Fig. 1 A ( Raut et al., 2020 ). Specifically, in ( Raut et al.,

020 ), by assuming the latency structure estimates are pairwise symmet-

ic, the negative values/cool colors imply the inward latency in Fig. 1 A

 Raut et al., 2020 ). Comparatively, in the current work which assumed

he pairwise connections to be asymmetric, the negative values/cool

olors depict greater inward than the outward information transfers in

ig. 5 (c). Similar temporal patterns appeared in the somatomotor, the

recuneus, and the medial occipital cortex. 



N. Xu, P.C. Doerschuk, S.D. Keilholz et al. NeuroImage 227 (2021) 117628 

 

t  

a  

h  

m  

U  

a  

2  

o  

i  

i  

s  

i  

n  

i  

t  

p  

a  

a  

n  

P  

(  

c  

n  

t  

t  

s  

e  

(  

f  

p  

2

 

(  

i  

D  

k  

2  

d  

e  

n  

i  

e  

c  

i  

c  

l  

m  

w  

p  

t  

b  

o  

b  

o

 

t  

r  

b  

t  

c  

H  

a  

r  

i  

F  

o  

t  

o  

t  

t  

t  

b  

a  

t  

p  

h  

b  

o  

s

 

n  

i  

e  

i  

l  

r  

a  

t  

n  

t

C

 

i

 

r

 

D

 

a  

d  

d  

 

K  

C

A

 

W  

K  

C  

a  

t  

1  

t  

t  

C  

p  

X  

S  

s

S

 

t

Strengths and limitations . Comparing to the existing methods for es-

imating the effective connectivity, p-correlation has many distinctions

nd merits. A group of effective connectivity estimation methods, which

ave been extensively used in neuroscience, are autoregressive based

odels, which include the transfer entropy ( Timme and Lapish, 2018 ;

rsino et al., 2020 ), the Granger causality statistic ( Seth et al., 2015 ),

nd other multivariate vector autoregressive models (MVAR) ( Ku ś et al.,

004 ; Ligeza et al., 2016 ; Wilke et al., 2008 ). Different from these meth-

ds, the causal model embedded in the p-correlation method ( Eq. (1) )

s a linear regression model but not autoregressive. More specifically,

n contrast to the widely used Granger causality statistic, which as-

umes errors of the autoregressive model to be Gaussian, p-correlation

s based only on the sample variance of the prediction error and does

ot require a Gaussian assumption on the noise. This is advantageous

f the BOLD signals lack Gaussian structure. In practice, for transfer en-

ropy, prior knowledge of the time lag is usually required before ap-

lying the algorithms ( Liu and Zhang, 2019 ; Timme and Lapish, 2018 ),

nd for Granger causality, a common lag is required by the model for

fferent and efferent connections ( Smith et al., 2011 ) or for the con-

ections among all ROIs ( Seth, 2010 ; Smith et al., 2011 ; Stokes and

urdon, 2017 ). For p-correlation, however, a model order selection

 Akaike, 1970 ; Cavanaugh, 1997 ; Schwarz, 1978 ) is integrated into the

omputation to estimate the lag length for each directed pair of sig-

als. Moreover, the effective connectivity methods, such as transfer en-

ropy, measure how much information is transferred from one signal

o another, but are not a direct measure of causal coupling strength of

ignals ( Ursino et al., 2020 ). In contrast, p-correlation, embedding a lin-

ar time-invariant causal system that delineates the information transfer

 Eq. (1) ), computes the strength of the directed functional connectivity

or the static functional brain network, and indeed, p-correlation has

erformed well on both synthetic and experimental fMRI data ( Xu et al.,

017 ). 

Other than the autoregressive models, dynamic causal modeling

DCM) ( Friston et al., 2003 ) has also been used to assess causal dynamics

n fMRI data. As discussed in (p. 878, Smith et al., 2011 ), most existing

CM algorithms require knowledge of external inputs (which are not

nown for rs-fMRI) although some variations may not ( Daunizeau et al.,

009 ). In contrast, p-correlation like correlation is a completely data-

riven approach. In addition, while DCM has demonstrated success in

stimating the effective connectivity for small networks with a small

umber of nodes, it has been a challenge for all versions of DCM scal-

ng to networks with large numbers of ROIs which are necessary for

xperimental studies of whole human brains ( Smith et al., 2011 ). In

ontrast, the p-correlation approach described in this paper scales sim-

larly to a correlation approach for which hundreds of ROIs are not a

hallenge ( Xu et al., 2014 , 2017 ). Moreover, DCM imposes a common

ag for all ROI interactions, whereas p-correlation estimates an asym-

etric duration of information transfer between every ROI-ROI pairs,

hich provides in dynamics not only in the spatial but also in the tem-

oral scale. Most importantly, a significant merit of p-correlation is that

he estimated strength of directed functional connectivity ( Eq. (3) ) can

e used to reliably detect the previously identified functional network

rganization of the human brain (Fig. 8, Xu et al., 2017 ), which has not

een achieved by any autoregressive model ( Stokes and Purdon, 2017 )

r DCM described above. 

Despite these advantages, the calculation of duration of information

ransfer estimated by p-correlation is limited by the temporal sampling

ate. As such, only spontaneous directed brain activities in the resting

rain that are longer than 1 𝑇 𝑅 can be detected by the method. Note also

hat slice timing correction was not applied in the HCP data set, which

ould bias the calculation of short durations of information transfer.

owever, because the hemodynamic dynamic response function acts as

 ~0.1 Hz low pass filter which greatly attenuates everything with a pe-

iod shorter than ~10 s, the slice timing correction for a 1 TR (720 ms

n our data) has a relatively small effect. Numerically, from Table 1 and

ig. 5 , the average duration of information transfer for each network
9 
r each ROI ranges up to 3 TRs, whereas the inward-outward asymme-

ries could be within + − 1TR. As both temporal sampling and the lack

f slice timing corrections could influence small differences in timing,

he temporal information smaller or equal to 1 TR might result from

he acquisition protocol which has no physiological significance. Hence,

he inward-outward asymmetries might only reflect the relative value

ut not the accurate values in durations. Nevertheless, p-correlation is

 measure that is adaptable to any type of timeseries, which enables us

o explore the neural information processing in detail on the electro-

hysiological data such as EEG and MEG that have a finer timescale and

igher SNR. In addition, while the present study is focused on the cere-

ral cortical organization, planned investigations will extend our study

f spatiotemporal functional interactivities in subcortical and cerebellar

tructures. 

Conclusions . As reviewed above, the p-correlation method provides

ovel insights into the spatiotemporal connectivity patterns in the rest-

ng brain. To our knowledge, this is the first method to concurrently

stimate the strength, direction and duration of resting-state connectiv-

ty. As such, this method opens new avenues for understanding not only

arge-scale coherence patterns in the resting brain but also their tempo-

al dynamics. This latter aspect, revealed by p-correlation, may serve as

 proxy for investigating the nature of information flow through the in-

rinsic functional architecture of the brain. These insights in turn open a

ovel frontier for investigating associations between the intrinsic func-

ional connectivity of the brain and human behavior. 
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